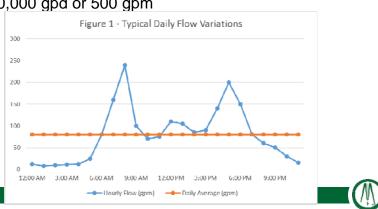


Wastewater Treatment Plant Review

City of Crosslake, Minnesota November 14, 2016

Outline of Review

- Review overall facility capacity by unit
- Review plant utilization
- Recommend improvements
- Discuss long range plans and funding


Existing Facility

- Constructed in 2004
- Wastewater Treatment Facility Capital Improvements Study prepared by WSN dated April 2016
- Permit up for renewal in 6 months
- No permit changes expected

Existing Facility

- 150,000 gallons per day (gpd) average flow permitted capacity (Average Wet Weather Flow – AWW)
- Peak Hourly Wet Weather (PHWW) flow estimated of 720,000 gpd or 500 gpm

Main Lift Station

- 12-inch gravity line feeds into
- · Current capacity 500 gpm
- High flow can cause downstream overflows
- City is replacing lift pumps with smaller pumps
- Smaller pumps is temporary fix

Pretreatment

- Fine screen too large
- Grit separation adequate size
- Pipe to oxidation ditch (6-inch) undersized!
- Pipe size problem from start-up
- Requires increasing pipe size

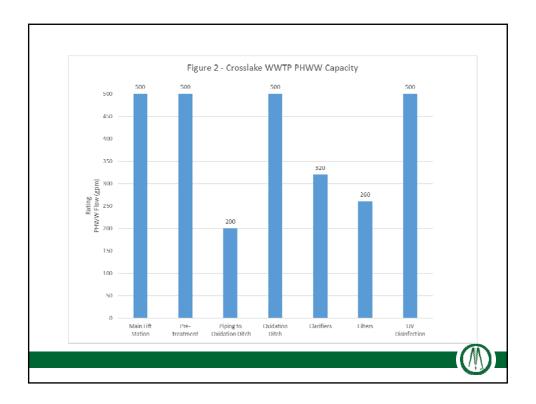
Oxidation Ditch

- Meets both AWW and PHWW needs
- No current issues
- Effluent piping also adequate size

Secondary Clarifier

- Two clarifiers each 18' diameter
- Rated PHWW flow capacity 317 gpm
- Units undersized to handle PHWW flow!

Tertiary Filters


- · Retro-fitted from original inefficient concept by staff
- Two filters 7.5-ft diameter each
- Rated capacity 264 gpm
- Significant size limitations!

Ultra-Violet (UV) Disinfection

• Meets both AWW and PHWW requirements

Current Flows

- Current AWW 55,000 gpd
- Peak one day flow 100,000 gpd
- Approximately 35% WWTP utilization on AWW basis
- Essentially 100% capacity on peak flow basis
- Requires flow equalization tank to buffer peak flows and maximize plant capacity

Flow Equalization / Backwash Holding Tank

- Primary WWTP issues are limited clarifier and filter capacity
- Constructing additional units difficult and costly
- Flow equalization and backwash holding can reduce peak flows and alleviate clarifier and filter size issues.

Flow Equalization / Backwash Holding Tank (cont.)

- Tank stores peak flows and pumps back during low flow periods
- Eliminates peak shock loads to clarifiers and filters
- Recommend installing between pretreatment and oxidation ditches
- Corrects piping bottleneck after pretreatment
- Allows plant to achieve permitted AWW capacity

Other Priority Items

- SCADA
- · RAS/WAS valving and biosolids wasting
- Filter backwash holding tank and automation
- Ferric chloride flow pacing
- · Generator sizing

Project Implementation

- Capacity issues should be addressed within the next 1-2 years
- Cost savings to do one large project versus phasing over 2-3 years
- Overall cost estimate \$900,000-\$1,200,000

Long Range Planning and Funding

- WWTP has significant remaining capacity
- Recommend growth plan on how to utilize capacity
- High median household income limits financing program
- Providing service to unsewered areas may make eligible or SRF low interest financing
- Recommend rate evaluation to determine project's impact on rates

Summary

- · Approach is to fix hydraulic limitations of WWTP
- · Other priority items
 - Flow Equalization/Backwash Holding Tank
 - SCADA Control System
 - Filter Backwash Supply Tank and Automation
 - RAS/WAS Valve Modifications
 - · Ferric Chloride Flow Pacing
- City has great resource in WWTP capacity need plan for utilization

Review of WSN Recommendations

- · Control Building
 - · Expand operations area
 - · Already completed
 - SCADA System
 - · Current facility has limited automation
 - SCADA systems critical to efficient operation

Pretreatment Building

- Air Blower
 - · Piping undersized
 - · Recommend new blower with enclosure
 - Recommend replacing air lift pump with self-priming pump
- Door Hardware and Hinges
 - · Very corrosive environment
 - · Most cost effective for staff to replace

Pretreatment Building (cont.)

- SCADA Controls
 - · Recommend as part of overall SCADA
- Flowmeter replacement
 - Recommend replacement with connection to SCADA system

Pretreatment Building (cont.)

- Increase Height of Control Structure
 - Effluent pipe is too small
 - Wall height is poor fix
 - · Significant issue as it restricts plant capacity
 - Recommend replacing pipe to fix root problem

Oxidation Ditches

- Brush Guard Replacement
 - · Normal wear and tear
 - · Most cost effective for staff to replace as needed
- Add Anoxic Zone for Denitrification and pH Control
 - · May increase operator license requirements
 - pH control may be better handed with flow pacing ferric chloride
 - Voluntary addition may preclude grant eligibility

Final Clarifiers

- Building Insulation Cladding
 - · Recommended to protect insulation
 - · Already completed
- Skimmer Arm and Skirting Replacement
 - · Skimmer arm broken and needs replacement

Final Clarifiers (cont.)

- Flow Pacing Ferric Chloride
 - · Critical to maintain permit compliance
 - Overdosing impacts pH, corrodes metal and increases biosolids
 - Flow pacing standard particularily for variable flow facilities
 - Expect cost savings in reduced chemical usage

Wet Well (Plant Drain)

- Install Transducer and Modify Controls
 - Recommend flow equalization tank to fix root problem
 - · Transducer not required with flow equalization tank

Sludge Pumps (RAS & WAS)

- Automatic Sludge Wasting
 - · Original design is manual process
 - Minimum daily but preferably multiple times per day wasting
 - · Significant staff time impact
 - Recommend automating with motorized valves and SCADA controls

Aeration Tank Modifications (Biosolids Storage Tank)

- Replace Aeration System
 - Original air piping design lacked risers above water level
 - · Pipes filled with sludge and plugged
 - · Need additional mixing around pump
- Sludge Pump Piping
 - · Currently utilizing common pipe
 - · Reduces operational flexibility
 - · Recommend dedicated piping to each pump

Aeration Tank Modifications (cont.)

- Add Additional Biosolids Storage Tanks
 - · Generally additional storage is good
 - · Freezing concern with above grade tanks
 - · Mixing required but would be difficult to install
 - Recommend more detailed cost analysis of contract disposal and reed beds
 - Determine if additional storage is required

Final Filter Modifications

- Original concept did not work
- · City retrofitted to more traditional style
- Manual backwashes (multiple times per day) significant staff burden
- Filters are undersized and exasperate backwashing frequency
- Recommend converting to automatic backwash system with SCADA control
- Upsize plant drain lift pumps

Final Filter Modifications (cont.)

- · Backwash water provided from holding tank
- · Tank is too small to wash both filters
- · Recommend adding additional tankage
- Tank should be dedicated to backwash
- · Well water is option but effluent recycle works
- Siting a well at the plant site difficult with setbacks

Electrical Generator

- Does not run all critical components
- Additional motors may be required with future improvements
- Recommend replacing with larger unit with capacity for future loads

