

Real People. Real Solutions.

City of Hayfield Infrastructure Management Plan

Infrastructure Management Plan City of Hayfield, MN November 2020

Submitted by: Botton & Menk, Inc. 2900-43^{er} Street NW, Suite 100 Rochester, MN 55906 P: 507-208-4332

Council Workshop Discussion

November 19, 2020

Key Points

- Smart Infrastructure Planning
 - Prioritizing Needs
 - Maximize Value with dollars spent
 - Considering both street & utilities

Overall Goal

Provide city-wide understanding of infrastructure system for informed Capital Improvement Planning

Intent of Plan:

<u>Specific List of Projects</u> Decision-Making Tool

Outline

- Pavements
 - Life Cycle Characteristics
 - Improvement Options
- Utilities
 - Water System
 - Sanitary System
- How to Use Infrastructure Management Plan with Capital Improvement Plan

Pavement Life Cycle

Figure 1: Typical Pavement Lifecycle No Seal Coat, Crack Fill or Overlay

Pavement Life Cycle

Pavement Life Cycle

Life Cycle Cost Analysis

Pavement Life Cycle Cost Example				
		Approximate Pavement Cost (Per Foot)		
Item	Year	With Maintenance	Without Maintenance	
Initial Construction	0	\$300.00	\$300.00	
Crack Fill & Chip Seal	5	\$12.00		
Crack Fill & Chip Seal	10	\$12.00		
Crack Fill & Chip Seal	15	\$12.00		
Mill & Overlay	20	\$100.00		
Crack Seal	22	\$2.00		
Reconstruction	25		\$260.00	
Chip Seal	25	\$10.00		
Crack Fill & Chip Seal	30	\$12.00		
Crack Fill & Chip Seal	35	\$12.00		
Mill & Overlay	40	\$100.00		
Crack Fill	42	\$2.00		
Chip Seal	45	\$10.00		
Salvage Value Adjustment	50	\$200.00	\$300.00	
Life Cycle Cost Per Foot		\$784.00	\$860.00	
Difference		(-) \$76.00	-	

Good Pavement Condition Fair Pavement Condition Poor Pavement Condition *Costs indicated above are based on typical costs for the area in 2020 dollars. Unit pricing per foot is based on an average 36-ft wide residential bituminous street pavement.

Table 2 – Pavement Conditional Ratings Description					
Conditional Rating	Condition Description	Typical Recommended Maintenance Activity			
7-10	Excellent to Good	Crack Fill & Seal Coat Program (every 5 years) ¹			
5-6	Good to Fair	Mill & Overlay, Patching as needed			
1-4	Fair to Very Poor	Full Depth Reconstruction			
Note:	Maximum recomm	nended life of seal coat is 7-8 yers.			

<u>Goals</u>

1 Life of Pavement

1 Street Ride Quality

Life Cycle Cost

Pavement Conditional Ratings (2020)

Table 3 – Pavement Conditional Ratings Summary					
Conditional Rating	Total Street Length (Miles)	Percentage of Total Miles			
7 - 10	3.3	35%			
5-6	2.6	27%			
1-4	3.6	38%			
Total	9.6	100%			
Gravel	1.6				

Water Distribution System

Cast Iron – Brittle, Corrosion Issues, Reduced Capacity

New Watermain – Ductile Iron or PVC, Upgrade Valves/Hydrants

Page 15

Sanitary Sewer System

Clay Sewers – Problematic, Open Joints, Susceptible to I&I

PVC Sewers – Gasketed Joints, Water Tight

Sanitary Sewer System

Page 18

Discussion

- What if you can only afford surface improvements?
 - Mill & Overlay life 20-25 years
 - Risks:
 - Utility Failure prior to pavement failure
 - Example: 80 yr old WMN will be 100+ yrs at end of pavement life
 - Added pavement replacement costs (\$\$\$)
 - Patch decreases pavement quality
- Sometimes necessary <u>Point is that the City understands</u> <u>these risks during the decision-making process.</u>

Page 21

Page 23

Budgeting

Seal Coating & Crack Filling

- Priority #1 (Preserve Good Pavement Conditions)
- Most cost-effective method
- 5 Year Cycle (6-8 year max.)
- Annual Budget \$44,000
 - See Appendix C-1
 - More cost-effective if completed every 2 years (88K project)
 - Expect to increase over time
 - Does not include misc. repairs
 to streets req'd to keep streets
 drivable (potholes, patching)

Budgeting

Mill & Overlay & Patching

- Short turnaround needed
- Consider underlying utilities
- 20-30 year cycle (typical)
- <u>Current Need =~\$840,000</u>
 - Recommend completing within next 5-10 years

<u>Next Steps:</u>

Funding

- Cash or Finance
- Add M&O projects to CIP

Budgeting

<u>Reconstruction</u>

- Prioritize overall needs to Maximize Value
- Minimize improvements to streets outside Capital Improvement Plan
- 50+ year cycle
- Focus on Higher Value Needs
- What's next:
 - Select high priority projects
 - Stay within CIP budget

Infrastructure Management Recap

Smart Infrastructure Planning

- Prioritizing Needs
 - 1. Preventative Maintenance (<u>Always</u>)
 - 2. Overlays & Reconstructions
- Maximize Value with dollars spent on Reconstruction
 - Plan reconstructions for projects with <u>Pavement & Utility</u> needs, when possible
 - Address full needs of corridor in one project

Continue Updating & Gathering Information

- Update plan regularly (with each bigger project)
- Update utility information as it becomes available

Overall Goal

Provide city-wide understanding of infrastructure system for informed Capital Improvement Planning

Project Planning Process - Example

- 1. Define Project Budget from CIP
 - 2021 \$1.5 Million
- 2. Select Project Area

1st Ave NE & 1st St NE

 5^{th} St NE ($4^{\text{th}} - 6^{\text{th}}$)

 4^{th} St NE ($4^{th} - 6^{th}$)

Alley

2nd Ave NE (Main – 2nd St NE)

3rd St NE, 4th Ave NE, 5th Ave NE

- Complete Feasibility Report & Design
- Modify Scope as necessary to <u>Stay within Budget</u>
- High Level Estimates for 2021 project below

Modify scope as needed by removing segments or using alternates

Project Planning Process - Example

- 1. Define Project Budget from CIP
 - 2024 \$1.5 Million (City)
- 2. Update Infrastructure Plan
- 3. Select Project Area
 - Complete Feasibility Report & Design
 - Modify Scope as necessary to <u>Stay within Budget</u>

Main St (1st NW to 2nd NE)\$ 1.147 MUndefined Overlays (Selected Later)\$ 350 KBUT.... Potential LRIP Grant (\$750 K)Center Ave (Main to 2nd Ave N)\$ 767 KPotential additional street if county can assistthrough municipal state aid funding

2021 Project

MN Statutes Ch. 429 Special Assessment Process

- 1. Prepare Feasibility Report
 - Identify Need & Cost
 - Verify/Modify Scope
 - Prepare Assessment Policy
- 2. Hold (Public) Improvement Hearing
 - Provide reasonable estimate of Assessment for owners
 - Authorize Final Design
 - Consider add'l public meetings
- 3. Hold Assessment Hearing
 - Before or After Construction
 - Certifies final assessment for each property

Tentative Schedule

Authorize Feas. Report, Survey, Geotech	11/19/20
Present Feasibility Report to Council, Call for Hearing	12/21/20
Special meeting to approve assessment policy	Early Jan
Improvement Hearing	01/18/21
Final Design	.Jan – Mar '21
Approve Plans & Specifications, Advertise for Bids	03/15/21
Receive Bids, Call for Assessment Hearing	04/19/21
Assessment Hearing & Award Bid	05/17/21
Construction (Start)	June '21
Substantial Completion(Underground & First Lift Blacktop)	Fall '21
Final Completion (Final Lift Blacktop, Punchlist)	Spring '22

Needed Tonight

Consideration of the following:

- Resolution directing Bolton & Menk to prepare Feasibility Report
- Task Order for Preliminary Engineering & Survey work

