2024 Central Avenues Improvements
 Preliminary Engineering Report
 City of Hopkins
 City Project No. 2023-010
 BMI Project No. OT1.130543

Submitted by:
Bolton \& Menk, Inc.
12224 Nicollet Avenue
Burnsville, MN 55337
P: 952-890-0509
F: 952-890-8065

Real People. Real Solutions.

Certification

Preliminary Engineering Report

For
2024 Central Avenues Improvements

City of Hopkins
Hopkins, MN
City Project No. 2023-010
BMI Project No. OT1.130543
September 2023

PROFESSIONAL ENGINEER

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision, and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.
signature: Misk Amoturna
Typed or Printed Name: Nicholas J. Amatuccio, PE
Date: 9/22/2023 License Number: 53639

Table of Contents

I. Executive Summary 1
A. Background Information 1
B. Proposed Improvements 1
C. Estimated Costs and Proposed Funding. 2
II. Project Introduction 3
III. Background 3
IV. Existing Conditions 4
A. Streets 4
B. Storm Sewer 6
C. Sanitary Sewer. 6
D. Watermain 7
V. Proposed Improvements 7
A. Streets 7
B. Storm Sewer 9
C. Stormwater Management 9
D. Sanitary Sewer. 10
E. Watermain 10
F. Pedestrian Facilities 11
G. Driveways 11
H. Lawn Irrigation Systems 11
I. Street Signing and Striping 12
J. Turf and Landscaping Restoration 12
K. Boulevard Trees 12
VI. Neighborhood Meetings 13
VII. Estimated Costs 15
VIII. Special Assessments. 15
IX. Right-of-Way/Easements/Permits 17
X. Project Schedule 17
XI. Feasibility and Recommendation 17
Tables
Table ES-1 - Preliminary Estimated Cost of 2024 Proposed Improvements 2
Table 1: Summary of Existing Corridor Conditions 5
Table 2: Summary of Geotechnical Evaluation 5
Table 3: Proposed Sanitary Sewer Improvements 10
Table 4: Proposed Watermain Improvements 11
Table 5: Resident Questionnaire Response Summary 14
Table 6: Preliminary Estimated Cost of 2024 Proposed Improvements 15
Appendix
Appendix A: Preliminary Cost Estimates
Appendix B: Figures
Appendix C: Preliminary Assessment Roll
Appendix D: Resident Questionnaires \& Neighborhood Meetings
Appendix E: Geotechnical Evaluation

I. Executive Summary

A. Background Information

The Hopkins City Council ordered preparation of this Preliminary Engineering Report at its May 2, 2023 meeting. In general, the goal of the project is to preserve the investments Hopkins has made in its infrastructure with proper upkeep through the City's Pavement Management Program. The preliminary design report has been completed to identify the appropriate improvements needed as well as the associated project costs and preliminary estimated assessments.
B. Proposed Improvements

This report examines potential street and utility construction of several streets in the Central Avenues Neighborhood in the City of Hopkins. These areas are depicted in Figure 1 of Appendix B. The proposed improvements are described in the body of this report and are graphically illustrated in Appendix B. In brief, the proposed improvements consist of:

- Full reconstruction of the following street sections in the Central Avenues Neighborhood with replacement of concrete curb and gutter and concrete sidewalk, and replacement of watermain, sanitary sewer, and storm sewer utilities.
- $7^{\text {th }}$ Ave N from the HCRRA Alley north of Mainstreet to Minnetonka Mills Rd
- $8^{\text {th }}$ Ave N from $2^{\text {nd }}$ St N to Minnetonka Mills Rd
- $3^{\text {rd }}$ St N from $5^{\text {th }}$ Ave N to $8^{\text {th }}$ Ave N
- Reclamation and resurfacing of $6^{\text {th }}$ Ave N from Mainstreet to $1^{\text {st }}$ St N.
- Mill and overlay of the following street sections.
- $1^{\text {st }}$ St N from $5^{\text {th }}$ Ave N to $8^{\text {th }}$ Ave N
- $2^{\text {nd }}$ St N from $5^{\text {th }}$ Ave N to $8^{\text {th }}$ Ave N
- The possible addition of concrete sidewalks in the following areas.
- North side of $3^{\text {rd }}$ St N from $5^{\text {th }}$ Ave N to $8^{\text {th }}$ Ave N
- Sanitary sewer lining in areas designated by City Staff throughout the City.

All of these improvements would be constructed in one construction season in 2024. While this report covers several areas of potential improvements, it will focus primarily on the full reconstruction streets of the Central Avenues Neighborhood listed above.
C. Estimated Costs and Proposed Funding

Cost estimates have been prepared to address the varying needs of all areas reviewed. Detailed cost estimates are provided in Appendix A and summarized below in Table 1.

Table ES-1 - Preliminary Estimated Cost of 2024 Proposed Improvements

Streets	$\$ 2,866,000$
Sanitary Sewer	$\$ 849,000$
Watermain	$\$ 1,113,000$
Storm Sewer	$\$ 867,000$
Contingencies (15\%)	$\$ 855,000$
Engineering \& Administration (20\%)	$\$ 1,310,000$
Total Estimate Project Costs	$\$ 7,860,000$

The project is proposed to be funded with general obligation bonds, utility funds, and assessments to individual properties. The chart below illustrates proposed funding sources inclusive of contingencies, engineering, and administration.

II. Project Introduction

This report examines the proposed street and utility improvements including storm sewer replacement, water main replacement, sanitary sewer replacement, and street reconstruction throughout the following streets as shown on Figure 1 in Appendix B:

- $7^{\text {th }}$ Ave N from the HCRRA Alley north of Mainstreet to Minnetonka Mills Rd
- $8^{\text {th }}$ Ave N from $2^{\text {nd }} \mathrm{St} \mathrm{N}$ to Minnetonka Mills Rd
- $3^{\text {rd }}$ St N from $5^{\text {th }}$ Ave N to $8^{\text {th }}$ Ave N

This report also examines the following related improvements which are proposed to be constructed in the same project, but without involvement of special assessments:

- Reclamation and resurfacing of $6^{\text {th }}$ Ave N from Mainstreet to $1^{\text {st }}$ St N .
- Mill and overlay of the following street sections.
- $1^{\text {st }}$ St N from $5^{\text {th }}$ Ave N to $8^{\text {th }}$ Ave N
- $2^{\text {nd }}$ St N from $5^{\text {th }}$ Ave N to $8^{\text {th }}$ Ave N
- The possible addition of concrete sidewalks in the following areas.
- North side of $3^{\text {rd }}$ St N from $5^{\text {th }}$ Ave N to $8^{\text {th }}$ Ave N
- Sanitary sewer lining in areas designated by City Staff throughout the City.

The project in its entirety involves:

- Addition/replacement of storm sewer within the reconstruction area
- Watermain replacement within the reconstruction area
- Water service replacement within the reconstruction area
- Sanitary sewer replacement within the reconstruction area
- Sanitary sewer rehabilitation in areas of need
- Sanitary sewer service replacement within the reconstruction area
- Concrete curb \& gutter replacement within the reconstruction area and other areas of need
- Bituminous street removal and reconstruction
- Concrete walk addition/replacement within the reconstruction area and other areas of need

III. Background

The 2024 Central Avenues Improvements project was initiated following its presence for several years in the City's Capital Improvement Plan in some capacity. The Hopkins City Council ordered the preparation of this feasibility report at its May 2, 2023 council meeting. The feasibility study and report has been completed to better identify the infrastructure improvements needed in the proposed project area and to better define costs associated with the improvements. This report will be used as the basis for final design and is also a required step in the State's Chapter 429 process for special assessments.

IV. Existing Conditions

A. Streets

The bituminous streets within the project areas are aged and exhibit various levels of wear and distress. This is evident on the surface by transverse, block, and alligator cracking. There is evidence of previous additional street repairs and maintenance throughout the project area including numerous street patches. Examples of the existing pavement conditions are shown below.

Consistent with observations of the existing pavements made during preparation of this report, the City of Hopkins' Pavement Management System also indicates that the "Pavement Condition Index" (PCI) for $7^{\text {th }}$ Ave $\mathrm{N}, 8^{\text {th }}$ Ave N , and $3^{\text {rd }}$ St N is below the threshold where rehabilitation is cost effective. As such, street reconstruction efforts are appropriate along $7^{\text {th }}$ Ave $\mathrm{N}, 8^{\text {th }}$ Ave N , and $3^{\text {rd }}$ St N .

The streets within the project area have varying widths (measured curb face to curb face). Table 1 below summarizes these and other existing conditions. Parking is typically allowed on both sides of the streets throughout the neighborhood, except on $1^{\text {st }} \mathrm{St} \mathrm{N}$. Large, mature trees can be found throughout the project within the City's ROW and near the back of curb.

Table 1: Summary of Existing Corridor Conditions			
Roadway	Existing Street Width	Existing Curb Type	Existing ROW Width
$7^{\text {th }}$ Ave N	35-36 feet	Concrete B618 Curb \& Gutter - 300' south of $3^{\text {rd }} \mathrm{St} \mathrm{N}$ and to the south; Curb w/ no gutter - Minnetonka Mills Rd to 300' south of $3^{\text {rd }} \mathrm{St} \mathrm{N}$	66 feet
$8^{\text {th }}$ Ave N	31 feet	Concrete B618 Curb \& Gutter	66 feet
$3^{\text {rd }} \mathbf{S t} \mathbf{N}$	29.5 feet	Concrete B618 Curb \& Gutter - between $7^{\text {th }}$ Ave N and $5^{\text {th }}$ Ave N and west of the alley between $7^{\text {th }}$ Ave N and $8^{\text {th }}$ Ave N ; Curb w/ no gutter - between $7^{\text {th }}$ Ave N and $8^{\text {th }}$ Ave N, east of the alley	60 feet
$6^{\text {th }}$ Ave N	35^{\prime}	Concrete B618 Curb \& Gutter	66 feet
$\mathbf{1}^{\text {st }}$ St N	$28^{\prime}-32^{\prime}$	Concrete B618 Curb \& Gutter	60 feet
$2^{\text {nd }} \mathrm{St} \mathrm{N}$	35^{\prime}	Concrete B618 Curb \& Gutter	66 feet

Subgrade soil sampling was completed throughout the reconstruction area ($7^{\text {th }}$ Ave $N, 8^{\text {th }}$ Ave N, and $3^{\text {rd }} \mathrm{St} \mathrm{N}$) by Braun Intertec in the Summer of 2023. A copy of Braun Intertec's Geotechnical Evaluation Report is included in Appendix E of this report. Eleven soil borings were taken throughout the reconstruction area, as well as six pavement cores throughout the pavement maintenance area ($6^{\text {th }}$ Ave $\mathrm{N}, 1^{\text {st }}$ St N , and $2^{\text {nd }}$ St N), and summarized in Table 2 below.

Table 2: Summary of Geotechnical Evaluation		
Street	Bituminous Thickness	Subgrade Material
$\mathbf{7}^{\text {th }}$ Ave \mathbf{N}	$4^{\prime \prime}-5^{\prime \prime}$	Mixture of poorly graded sand, silty sand, clayey sand, and sandy lean clay
$\mathbf{8}^{\text {th }} \mathbf{A v e} \mathbf{N}$	$2.5^{\prime \prime}-3.5^{\prime \prime}$	Mixture of poorly graded sand and lean clay
$\mathbf{3}^{\text {rd }} \mathbf{S t} \mathbf{N}$	$2.75^{\prime \prime}-4.5^{\prime \prime}$	Mixture of silty sand and poorly graded sand
$\mathbf{6}^{\text {th }} \mathbf{A v e} \mathbf{N}$	$5^{\prime \prime}$	$19^{\prime \prime}$ of limestone aggregate base
$\mathbf{1}^{\text {st }} \mathbf{S t} \mathbf{N}$	$5.5^{\prime \prime}-9.5^{\prime \prime}$	$4.5^{\prime \prime}$ of recycled aggregate base and sand with gravel
$\mathbf{2}^{\text {nd }} \mathbf{S t} \mathbf{N}$	$4.5^{\prime \prime}$	$8.5^{\prime \prime}-12^{\prime \prime}$ of limestone and recycled aggregate base

The soils found just beneath pavements in the project area were most commonly fill soils classified as poorly graded sand, silty sand, clayey sand, or lean clay. A few of the borings in the project area found slightly organic clay (buried topsoil). Buried topsoil is an undesirable material for roadway construction as it's unable to adequately support heavy vehicles, leading to earlier failure of overlying pavements.
B. Storm Sewer

The existing storm sewer system materials in the reconstruction area were inventoried in Summer 2023. The existing storm sewer systems serving the neighborhood are comprised of reinforced concrete pipe (RCP), varying in size from 12 -inch diameter to 54 -inch diameter. The storm sewer catch basins and manholes are mostly precast concrete structures.
There are multiple storm sewer systems serving the project area. $7^{\text {th }}$ and $8^{\text {th }}$ Ave N, from Minnetonka Mills Rd to $3^{\text {rd }}$ St N drain west down $3^{\text {rd }}$ St N and south to Excelsior Blvd through existing storm sewer. The remainder of the project area drains south through an existing trunk storm sewer main on $6^{\text {th }}$ Ave N , ultimately discharging to Nine Mile Creek near Valley Park.

Drainage issues have been identified throughout the reconstruction project area through evaluation of site grades and elevations by the project team, through feedback from the neighborhood residents, and discussions with City Staff. These drainage issues can be generalized as:

1. Due to the flat grades of some of the streets and alleys, especially $8^{\text {th }}$ Ave N from $2^{\text {nd }}$ St N to $3^{\text {rd }}$ St N and $3^{\text {rd }}$ St N between $6^{\text {th }}$ Ave N and $5^{\text {th }}$ Ave N, localized drainage problems are prevalent.
2. On $7^{\text {th }}$ Ave N, between $1^{\text {st }}$ St N and $2^{\text {nd }}$ St N, there are flat grades surrounding the existing low point, causing flooding and drainage issues for the properties in this area before the water can clear the existing emergency overflow (EOF) elevation on $7^{\text {th }}$ Ave N.
3. There is a lack of catch basin inlets at a few of the intersections in the project area, and these limited catch basins can be overloaded during heavier rain events which causes ponding in the street.
4. There is a lack of gutters along several of the streets to adequately direct water through areas of flat topography to drainage inlets.
5. Many of the sidewalks throughout the neighborhood have isolated low spots and do not drain well after rain events or during snow melt.

Proposed storm sewer improvements are discussed later in this report.
C. Sanitary Sewer

The existing condition of the sanitary sewer system was evaluated through discussions with City staff and CCTV inspection of the interior of the sewer piping by a City contractor. Manhole structures were visually inspected in the field by Bolton \& Menk. CCTV videos produced by others were reviewed by Bolton \& Menk to confirm existing sanitary mainline pipe conditions and identify the location of existing sewer service line locations.

The existing sanitary sewer system primarily consists of 8 -inch diameter clay pipe, except for one half block of $7^{\text {th }}$ Ave N between $1^{\text {st }}$ St N and $2^{\text {nd }}$ St N that was replaced with 8 -inch diameter plastic pipe. Clay pipe is susceptible to infiltration and root intrusion over time due to the large number of joints and the deterioration of the gasket material originally used to
seal the joints.
The project's sanitary manholes are made of a mixture of brick, concrete block, and precast concrete structures. Brick and block structures were typically built around the 1950's/1960's or earlier, whereas precast structures indicate these structures were replaced at some point after initial construction of the other infrastructure, likely in response to some deficiency with the original structure. Brick and block manholes are susceptible to infiltration over time due to cracks and deterioration of the mortared joints. Precast concrete manholes continue to be used in modern construction and are generally acceptable provided proper gaskets were provided with the initial construction and remain in good working order.

Service lines in the neighborhood are typically 4-inch or 6-inch and their material may be clay, cast iron, orangeburg, transite, or PVC. Clay and orangeburg sanitary sewer pipes are highly susceptible to infiltration by groundwater, causing groundwater to be treated by the Met Council at its treatment facilities downstream at a cost to the public. The vast majority of sanitary sewer mains and service lines in the neighborhood are made of clay material. Based on observations of sewer service replacements to individual properties performed recently in nearby neighborhoods, potential exists for encountering orangeburg sewer service pipes during construction of the project. Orangeburg pipe, which can generally be described as layered tar paper wrapped in a round manner to create a pipe, was commonly installed around the time several neighborhoods in Hopkins originally developed.
Orangeburg pipe is widely known to 'rot' where exposed to water, generally on the bottom of the pipe, and ultimately collapse as it ages and is unable to support the surrounding soil.

Proposed sanitary sewer improvements are discussed later in this report.
D. Watermain

The existing layout and condition of the water main was determined from record drawings and discussions with City staff. The water main is primarily 6 -inch cast iron pipe (CIP). CIP is a common watermain material, however upon reaching its useful life tends to fail. Because it is so brittle, as the soils around the pipe move slowly over decades, CIP cannot support shearing forces and ultimately breaks. These portions of the watermain system were installed in the 1950s and 1960s. CIP installed around this time period was also occasionally installed with lead-packed fittings.

Service lines for single family homes in the project area are typically $3 / 4$-inch or 1 -inch and their material may be copper, galvanized steel, or lead.

Proposed watermain improvements are discussed later in this report.

V. Proposed Improvements

A. Streets

All street pavements within the reconstruction project area have reached a point where maintenance procedures such as seal coating or milling and overlaying are no longer costeffective strategies. $7^{\text {th }}$ Ave $N, 8^{\text {th }}$ Ave N, and $3^{\text {rd }}$ St N are scheduled for full reconstruction.

Proposed reconstruction improvements include replacement of concrete curb and gutter and replacement of the full depth of the pavement section with underlying aggregate base. It is also proposed to install a sand section under the aggregate base for additional roadway stability in areas where there are organics (buried topsoil) and other unsuitable soils are present. Concrete curb will be replaced per City Policy 8.02 with B618 concrete curb and gutter, which will help extend the life of the pavement by keeping water out of the subgrade
and will provide a solid edge for the asphalt pavement. Existing drainage patterns will be maintained and the elevation of the existing roadways at their edge is proposed to approximate the existing elevations. Attempts at lowering the road will be made (during final design) where appropriate to improve drainage within and toward the street where beneficial and practical.

Proposed street widths from face of curb to face of curb will vary from street to street throughout the reconstruction area. Proposed street widths have been determined based on a variety of factors, including the need for a consistent street width along each roadway's length, the existing roadway width, typical roadway widths throughout the City, the existing right of way width, minimizing creation of additional impervious area, and avoidance of significant impacts due to even minor changes in street width. Attempts to avoid impacts to significant trees was also a consideration during the preliminary design process used to determine proposed street widths.

The following specific improvements are proposed for each unique roadway corridor:

- $\quad 7^{\text {th }}$ Ave N is proposed to be reconstructed, including the replacement of concrete curb and gutter, at 35 feet wide from curb face to face south of $1^{\text {st }}$ St N and 32 feet wide from curb face to face north of $1^{\text {st }} \mathrm{St} \mathrm{N}$. This will narrow the road north of $1^{\text {st }} \mathrm{St}$ N by approximately 3 feet. Parking regulations will remain consistent with existing conditions throughout this area.
- $8^{\text {th }}$ Ave N is proposed to be reconstructed, including the replacement of concrete curb and gutter, at 28 feet wide from curb face to face. This will narrow the road by approximately 3 feet. Parking regulations will remain consistent with existing conditions throughout this area.
- $\quad 3^{\text {rd }}$ St N is proposed to be reconstructed, including the replacement of concrete curb and gutter, at 28 feet wide from curb face to face. This will narrow the road by approximately 1.5 feet. Parking regulations will remain consistent with existing conditions throughout this area.

The minimum proposed street grade is 0.50% consistent with City standards. Street grades flatter than 0.50% are undesirable for drainage. In some areas, new low-points with adequate storm sewer will need to be created to increase roadway longitudinal slope for proper drainage. These locations will be confirmed during the final design process, but a few locations have been identified during preliminary design including $7^{\text {th }}$ Ave N between $1^{\text {st }}$ St N and $2^{\text {nd }}$ St $N, 8^{\text {th }}$ Ave N between $2^{\text {nd }}$ St N and $3^{\text {rd }}$ St N, and $3^{\text {rd }}$ St N between $5^{\text {th }}$ Ave N and $6^{\text {th }}$
Ave N. Overall drainage patterns/directions throughout the project area are not proposed to change.

The preliminary proposed typical pavement section for all reconstructed streets consists of $2^{\prime \prime}$ wearing course, $2^{\prime \prime}$ non-wear course, $8^{\prime \prime}$ aggregate base class 5,12 " select granular, and spot subgrade soil corrections.

Pavement maintenance is proposed for the following streets in the project area:

- Reclamation and resurfacing of $6^{\text {th }}$ Ave N, between Mainstreet and $1^{\text {st }}$ St N
- 2" wearing course, $3^{\prime \prime}$ non-wearing course, 7 " + reclaimed material
- Mill and overlay of $1^{\text {st }}$ St N, between $5^{\text {th }}$ Ave N and $8^{\text {th }}$ Ave N
- 2 " mill and $2^{\prime \prime}$ wearing course

$$
\text { - Mill and overlay of } 2^{\text {nd }} \text { St } N \text {, between } 5^{\text {th }} \text { Ave } N \text { and } 8^{\text {th }} \text { Ave } N .
$$

- 2 " mill and 2 " wearing course

Full reconstruction is not required on these streets because of one or more of the following reasons:

- The PCI rating is high enough to be able to use maintenance procedures such as milling to extend the life of the pavement. ($1^{\text {st }}$ St N and $2^{\text {nd }}$ St N)
- The existing concrete B618 curb and gutter is in relatively good condition. ($6^{\text {th }}$ Ave N , $1^{\text {st }}$ St N, and $2^{\text {nd }}$ St N)
- The original underground utilities have been replaced and are in good condition. ($6^{\text {th }}$ Ave N and one block of $1^{\text {st }}$ St N)
- There are no underground utilities. (Most of $1^{\text {st }}$ St N and $2^{\text {nd }}$ St N)

B. Storm Sewer

All the storm sewer in the project area will be reconstructed for constructability of other utilities, changing curb alignment, or increase the storm water pipe capacities to meet City standards for a 10-year rainfall event. Storm sewer will generally be replaced in the same location as the existing system, other than some additional catch basin inlets and storm sewer pipe as needed for drainage. The following is a summary of the most significant improvements proposed to the storm sewer system.

- Storm sewer will be extended down $8^{\text {th }}$ Ave N between $2^{\text {nd }}$ St N and $3^{\text {rd }}$ St N to midblock, with additional catch basin inlets to create a new low point on this block with flat grades. This will improve drainage on this block by providing a location for the water to flow in the curb line. While other blocks in the project area are not as flat as this block, they will also be evaluated further during final design to determine if additional storm sewer pipe and catch basins will be necessary for proper drainage.
- Storm sewer will be extended down $3^{\text {rd }}$ St N to the alley between $6^{\text {th }}$ Ave N and $5^{\text {th }}$ Ave N and an inlet will be constructed to improve drainage at the alley entrance.
- During final design the roadway profile on $7^{\text {th }}$ Ave N and $1^{\text {st }} \mathrm{St} \mathrm{N}$ will be further evaluated to determine if the existing emergency overflow (EOF) elevation can be lowered, allowing water to flow down $7^{\text {th }}$ Ave N toward $1^{\text {st }}$ Ave N prior to the potential flooding of the properties near the $7^{\text {th }}$ Ave N low point during a major storm event.

C. Stormwater Management

The proposed improvements will result in more than 1 acre of land disturbance; therefore, stormwater management will be required by the Municipal Separate Storm Sewer System (MS4) General Permit. At this time, it is not expected that any stormwater management will be required by Nine Mile Creek Watershed District (NMCWD) with their current rules. If future rule changes are implemented during final design, the NMCWD stormwater management rules will be followed.

The water quality volume was calculated as one-half (0.5) inch times the sum of the new and fully reconstructed impervious surface, equaling approximately 8,430 cubic feet of required water quality volume. During final design the actual treatment volume will be verified, and feasible treatment options will be investigated to maximize the treatment of the water quality volume prior to discharge from the MS4.

D. Sanitary Sewer

As summarized in the existing conditions section of this report discussing sanitary sewer, most of the existing system in the reconstruction area is relatively old, made of an outdated (clay) material, and in poor condition. Given these conditions, the opportunity to excavate to this utility given removal of overlying roadway pavement for street reconstruction, and the City of Hopkins policy to replace clay sewers during street projects, the existing 8" Clay gravity sanitary sewer system throughout the reconstruction area is proposed to be replaced with PVC pipe. One section of sanitary sewer on $7^{\text {th }}$ Ave N between $1^{\text {st }}$ St N and $2^{\text {nd }}$ St N was replaced with PVC pipe in 1989 but will still require a spot repair due to a disjointed pipe. There is no sanitary sewer on $3^{\text {rd }} \mathrm{St} \mathrm{N}$ and none is proposed to be installed on this street.

Where gravity mains are to be replaced, new service wyes will be provided to each home. Per City policy, sanitary services which are not PVC are proposed to be replaced with PVC pipe to the right-of-way (ROW) line. New precast concrete manholes will be installed and will incorporate the City standard 27 -inch diameter cover utilizing concealed pick-holes to minimize inflow and infiltration. The proposed sanitary sewer mainline improvements are summarized in Table 3 below.

The exact age of all existing pipes listed in Table 3 could not be verified. In such cases, its age was reasonably estimated based on the known age of other utilities in the area.

Roadway	From/To	Existing Pipe			Proposed Improvements
		Dia.	Matl.	Age	
$7^{\text {th }}$ Ave N	HCRRA Alley/ $1^{\text {st }}$ St N	8"	VCP	1950	8" PVC
$7{ }^{\text {th }}$ Ave N	$1^{\text {st }}$ St $\mathrm{N} / 300{ }^{\prime}$ north of $1^{\text {st }}$ St N	$8 \prime$	PVC	1989	Spot Repair
$7{ }^{\text {th }}$ Ave N	300 north of $1^{\text {st }}$ St N/Minnetonka Mills Rd	$8 \prime$	VCP	1950	8" PVC
$8^{\text {th }}$ Ave N	$2{ }^{\text {nd }}$ St N/Minnetonka Mills Rd	8'	VCP	1950	8" PVC
$3{ }^{\text {rd }}$ St N	$5^{\text {th }}$ Ave $\mathrm{N} / 8^{\text {th }}$ Ave N	n/a	n/a	n/a	none

E. Watermain

All existing watermain within the reconstruction project area is proposed to be replaced with new ductile iron pipe (DIP) as a part of this project. An 8 -inch pipe is proposed on all the roadways to most cost effectively achieve adequate fire flows and water distribution. Fire Hydrants will also be replaced along the new watermain and gate valves will be added at each intersection for more efficient operations and maintenance.

Per City policy all water service lines to single family homes are proposed to be replaced to the right-of-way with a new 1" diameter copper service line. A new curb stop valve and box will be provided on each service, approximately on the right-of-way line. Multi-family residential properties and commercial properties will receive a new 6 " service line or a service line matching their existing service diameter, whichever is greater. The proposed watermain mainline improvements are summarized in Table 4 below.

The exact age of all existing pipes listed in Table 4 could not be verified. In such cases, its age was reasonably estimated based on the known age of other utilities in the area.

Table 4: Proposed Watermain Improvements

Roadway	From/To	Existing Pipe			Proposed
		Dia.	Matl.	Age	Improvements
$7^{\text {th }}$ Ave N	HCRRA Alley/Minnetonka Mills Rd	$6^{\prime \prime}$	CIP	1950	$8^{\prime \prime}$ DIP
$8^{\text {th }}$ Ave N	$2^{\text {nd }}$ St N/Minnetonka Mills Rd	$6^{\prime \prime}$	CIP	1950	$8^{\prime \prime}$ DIP
$3^{\text {rd }}$ St N	$5^{\text {th }}$ Ave $N / 8^{\text {th }}$ Ave N	n / a	n/a	n/a	none

F. Pedestrian Facilities

Replacement of the existing concrete sidewalk is proposed on all streets within the reconstruction area. This will be necessary due to the street and utility construction and because the existing sidewalk is in poor condition. The existing sidewalks also do not drain properly. The sidewalks are proposed to be constructed at 6 feet width. The proposed turf boulevard width will vary but will be somewhat consistent and slightly wider than existing since the roadway is being narrowed. The preliminary proposed typical sidewalk section consists of $4 "$ concrete, $4^{\prime \prime}$ aggregate base class 5 , and spot subgrade soil corrections.
Installation of new concrete sidewalk is being considered along the north side of $3^{\text {rd }} \mathrm{St} \mathrm{N}$ from $5^{\text {th }}$ Ave N to $8^{\text {th }}$ Ave N . This sidewalk will connect sidewalks that run north-south on the Avenues throughout the neighborhood. Currently, there is only one-half block of sidewalk on the north side of $3^{\text {rd }} \operatorname{St~} \mathrm{N}$ between $7^{\text {th }}$ Ave N and $8^{\text {th }}$ Ave N , which doesn't provide an adequate pedestrian facility to the general public. The project team has reached out to the properties along $3^{\text {rd }}$ St N to collect their feedback and desire to install a new sidewalk on this street. If not desired by these property owners, the project will not install the sidewalk and adequate east-west pedestrian facilities are located nearby on Minnetonka Mills Rd, $2^{\text {nd }} \mathrm{St}$ N , and $\mathrm{l}^{\text {st }} \mathrm{St} \mathrm{N}$.

Spot sidewalk replacements are proposed in the street maintenance area as determined by the engineer in the field for areas with poor drainage, cracked sidewalk, or settled sidewalk which could become a tripping hazard.
G. Driveways

All single-family residential driveways within the reconstruction project area receiving new concrete curb and gutter, will receive a new 5 -foot-wide concrete apron adjacent to the concrete curb. The new concrete aprons will be constructed accordance with City standards in terms of depth and shape. In addition to the 5-foot driveway apron, additional driveway pavement disturbed as a part of the project will be replaced in-kind to match the existing driveway with the street improvements.

Non-residential and multi-family residential properties will receive the City's standard concrete commercial driveway entrance apron. Alley entrances will also be replaced with the City's standard concrete alley entrance.
H. Lawn Irrigation Systems

There may be existing sprinkler systems encountered in construction of the project. Adjacent property owners will need to assist in locating and identifying the type of sprinkler systems that are in place prior to and during construction if these facilities are to be protected. The contractor will be required to make efforts to preserve the in-place systems during construction. Where this is found to be unfeasible, the contractor will be required to remove and replace or salvage and reinstall the existing sprinkler system.
I. Street Signing and Striping

The existing street name signs will be replaced by the contractor to update the signs to the new City standards. Regulatory signs such as stop and parking enforcement signs will be replaced to conform to retroreflectivity requirements. Existing crosswalk blocks will be repainted in the same locations in both the reconstruction and street maintenance areas. The brick pattern stamped bituminous crosswalk on the south leg of $8^{\text {th }}$ Ave N and Minnetonka Mills Rd will be replaced with the same or similar material for additional awareness by Alice Smith Elementary due to student crossings.

Traffic and pedestrian counts were taken at the intersection of $7^{\text {th }}$ Ave N and $1^{\text {st }}$ St N in response to resident input that the intersection is busy and the desire for an all-way stop intersection and/or additional pedestrian crossing features. Both vehicle and pedestrian counts were low and did not meet any of the warrants for an all-way stop or enhanced pedestrian crossing features, such as an RRFB (Rectangular Rapid Flashing Beacon). This intersection and all other similar intersections in the neighborhood will keep its current traffic control layout with stop signs on just one of the street crossings. This intersection will also keep the same crosswalk blocks after paving for pedestrian crossings.

J. Turf and Landscaping Restoration

Boulevards will be graded as necessary to facilitate drainage from the existing yards to the streets. Turf areas disturbed by construction, either due to boulevard grading or utility service construction, will be graded to match the new street grades and restored with sod in residential yards. In parks or other areas maintained by the City, and sometimes larger commercial properties, areas will be restored with seed and mulch (hydroseed).

Landscaping within the project area will be protected where feasible. Landscaping that is within the right-of-way and/or cannot be protected will either be salvaged and reinstalled by the contractor or will be the owner's responsibility. Items including, but not limited to walls, fences, and pavers, will be salvaged and reinstalled by the contractor. The engineer will coordinate with individual homeowners on landscape impacts to items including, but not limited to plantings, decorative rock, and decorative pavers for removal and relocation by the homeowner.
K. Boulevard Trees

As with all projects being considered by the City of Hopkins, it is a goal of this project to protect healthy boulevard trees and/or make improvements to the urban tree canopy where feasible. Residents echoed the desire to protect healthy trees and remove dead/dying trees in questionnaire responses and discussion at the neighborhood meetings. Design and construction of improvements, including appropriate selection of street widths and utility main placement, are proposed to be completed in a manner to achieve the City's goals to save healthy trees. An evaluation of boulevard tree species and condition was completed in consideration of the adjacent street and utility improvements to facilitate design and construction and meet these criteria.
Due to their susceptibility to the emerald ash borer, green ash trees are generally considered undesirable trees. Similarly, silver maple trees are more susceptible to storm damage than other species, create more litter because of their soft wood and weak, brittle branches, and thus are not desirable trees to Public Works staff and local residents. Silver maples are also known to have an intrusive root system that can damage sidewalks and curbs and penetrate sewer joints. Finally, American Elm are still susceptible to Dutch Elm disease. These three undesirable species, as well as other trees that are either dead or in poor health, should either be removed or otherwise not protected through the
design/construction process.
An inventory of the trees located in the right of way was performed in August 2023 by City public works staff and Bolton \& Menk staff. Consistent with all City of Hopkins annual street and utility improvement projects, trees that are dead or in very poor condition, and "undesirable" species in fair or poor condition, are proposed to be removed and replaced. Approximately 32 boulevard trees within the project area are considered undesirable due to condition/species. Proposed tree removals are shown in the figures within Appendix B. Those tree removals identified due to conflicts with utilities or street grading will be further evaluated during final design to see if reasonable measures can be taken to preserve them. Options to preserve highly desirable trees in harm's way include small retaining walls or moving service lines around trees but is not always feasible.

This project provides an opportunity to increase the health of the neighborhood forest by replacing some of the undesirable species with trees better suited for boulevard areas. One tree is proposed to be installed per each tree removed. New 2-inch balled and burlapped trees are typically planted in replacement of those removed. The City will communicate with the property owners to replace trees as part of the project in the event tree removal is necessary. The species of trees to be planted will match the list of species on the City's website in cooperation with the City's Public Works department and as follows: Crab Apple; Elm; Hackberry; Honey Locust; Ironwood; Japanese Lilac; Kentucky Coffee; Linden; Maacki; Maple; Swamp White Oak.

Properties located adjacent to boulevard tree removals will be contacted and allowed to provide input on their desire for a particular tree species to be planted based on the list provided.

VI. Neighborhood Meetings

A neighborhood meeting occurred on September 13, 2023 with residents and property owners that are affected by the improvements in the reconstruction area. The City Engineer and Bolton \& Menk Project Manager presented the scope of the project with a discussion of existing and proposed street and utility conditions, preliminary assessment policies, other City policies, and project schedule. Additional information on the neighborhood meeting is documented in Appendix D of this report. There were approximately 10 property owners/residents who participated in the event in-person but the presentation was also broadcasted and recorded over Zoom with 6 more residents in attendance online. The presentation is also available on the project website (www.Hopkins-2024.com) for residents to view at their convenience. Some of the most common questions or comments received from residents at the neighborhood meeting are as follows:

1. Some residents were interested in additional sidewalks on $3^{\text {rd }}$ St N where there currently is none.
a. The project team has reviewed this area for adding a sidewalk and has reached out to the property owners along $3^{\text {rd }}$ St N between $5^{\text {th }}$ Ave N and $8^{\text {th }}$ Ave N to see if they are interested additional sidewalk as part of this project.
2. Residents had general questions about assessments, including the process, costs, and payment options.
a. The project team went over the assessment policy with the residents and provided rough estimates on what to expect for costs.
b. Individual assessment amounts were not provided at the meeting, but they
will be available at the next neighborhood meeting. The project team also described the payment options for the assessments.
3. Residents also had some general questions about the construction process, service replacements, schedule, and access during construction.
a. The project team went over some of the typical items that residents will experience during construction and the expectations for vehicle access during and after working hours.
b. Individual water and sewer service replacements were discussed, including the potential for private work by the homeowner if they choose to replace their entire service line or if it is required due to material that is not allowed by plumbing code (lead water or orangeburg sewer).
c. The construction schedule was briefly discussed in terms of duration on each block, but it was explained that the actual schedule and phasing of the project won't be determined until a Contractor is secured to complete the work in Spring 2024.

A second neighborhood meeting has been scheduled for October 25, 2023 to review preliminary special assessments and proposed improvements.

Residents within the reconstruction project area were also mailed questionnaires in May 2023 shown in Appendix D. The questionnaire focused on drainage issues, utilities, pedestrian facilities, landscaping, and other concerns the residents may have. 42 questionnaires, which is roughly 25% of the affected properties, were returned with comments. The most common questionnaire responses related to:

1. Specific drainage problems in the roadway and on the sidewalk
2. Desire for sidewalk improvements and additional sidewalks
3. Speeding and intersection safety
4. Overgrown and unhealthy trees throughout the neighborhood
5. Concerns about existing landscaping and trees in the boulevard

A summary of the responses to the resident questionnaire are provided in the Table below.

Table 5: Resident Questionnaire Response Summary			
	Yes	No	Total \# of Responses
Drainage Issue	13	29	42
Sanitary Issue	19	23	42
Water Issue	8	34	42
Pedestrian Facility Issue	20	22	42
Irrigation	4	38	42
Invisible Fence	1	41	42
Tree Concerns	19	23	42
Landscaping Concerns	4	38	42

VII. Estimated Costs

Estimated construction costs presented in this report include a 15 percent contingency factor. Overhead costs, estimated at 20 percent, include legal, engineering, administrative and fiscal costs. Final costs and assessments will be determined by using low-bid construction costs of the proposed work.

Proposed construction costs for the 2024 Central Avenues Improvements (including curb and gutter, bituminous street, pedestrian facilities, storm sewer, sanitary sewer, water main, and turf restoration) are itemized in Appendix A and are summarized in Table 6 below.

These cost estimates are based upon public construction cost information. Because the consultant has no control over the cost of labor, materials, competitive bidding process, weather conditions and other factors affecting the cost of construction, all cost estimates are opinions for general information of the client and no warranty or guarantee as to the accuracy of construction cost estimates is made. It is recommended that costs for project financing should be based upon actual, competitive bid prices with reasonable contingencies.

Table 6: Preliminary Estimated Cost of 2024 Proposed Improvements	
Proposed Street Improvements	$\$ 2,866,000$
Proposed Sanitary Sewer Improvements	$\$ 849,000$
Proposed Watermain Improvements	$\$ 1,113,000$
Proposed Storm Sewer Improvements	$\$ 867,000$
Street \& Utility Subtotal	$\$ 5,695,000$
Contingencies (15\%)	$\$ 855,000$
Engineering \& Administration (20\%)	$\$ 1,310,000$
Total Estimated Project Costs	$\$ 7,860,000$

VIII. Special Assessments

Street improvements throughout the reconstruction project area $\left(7^{\text {th }}\right.$ Ave $\mathrm{N}, 8^{\text {th }}$ Ave N , and $3^{\text {rd }}$ St N) will be assessed to adjacent and benefitting properties according to the City of Hopkins' assessment policy. Street improvement work includes pavement removals, grading, subgrade correction, aggregate base, driveways, pavement construction, and restoration.

According to the City's assessment policy, residential street improvement costs are assessed to the benefitting properties. In summary, assessments to benefitting properties are determined based on the following criteria:

- Properties are assessed based on 70\% of the actual street improvement costs. This is referred to as a "Street Assessment".
- North/South Avenue improvements are typically assessed to properties with direct frontage based on a front foot basis (length) along the Avenue.
- East/West Street improvements are typically assessed to properties located within one block north/south of the Street on a unit basis (per each property).
- "Street Assessments" to any individual property are capped at front foot rate increase annually by 3% over the prior year's amount. An assessment cap for residential properties of $\$ 106.14$ per front foot has been established by adding 3% to the 2023 assessment cap according to City policy.
- The assessment cap is applied to residential properties in the project area and is not applicable to commercial properties which will receive a benefit appraisal in preparation of the assessment roll. For properties receiving a benefit appraisal (11 $7^{\text {th }}$ Ave N), the lesser of the 'per policy' calculation and the benefit amount per the appraisal will be used. The benefit appraisal for $117^{\text {th }}$ Ave N should be available prior to the Public Improvement Hearing.
- Several properties in the project area were previously assessed during the 2012 Street \& Utility Improvements project for the reconstruction of Minnetonka Mills Rd and $3^{\text {rd }}$ St N from $8^{\text {th }}$ Ave N to $9^{\text {th }}$ Ave N. These previous assessment amounts were considered when calculating preliminary assessments for this project, and properties that were assessed in 2012 will either be assessed at a lower amount or will not be assessed for the 2024 project depending on what they were assessed for in 2012 for the improvements to Minnetonka Mills Rd and $3^{\text {rd }}$ St N. This same policy was applied to several of the properties in the 2023 Street \& Utility project because they were adjacent to or part of the 2011 Street \& Utility project and assessed in 2011 for improvements to those streets.
- Utility (sanitary sewer, storm sewer, water) main improvements are 100% paid by the respective utility funds. No assessment for utility mains is proposed and their costs do not contribute to either the "Street Assessments" or "Utility
Assessments".
- Utility service lines are owned by the individual property per City Code. As a result, the City assesses for the cost of the individual service line replacements. This is referred to as a "Utility Assessment". The City participates in a share of these costs for residential properties because the replacement is mandatory where mains are reconstructed, and therefore properties are assessed for only 50% of the cost of the service replacement based on actual bid prices received. Commercial properties are assessed for 100% of the cost of the service replacement.
- The estimated cost of the water service replacement from the main to property line is $\$ 3,350$. With the proposed $50 / 50$ "Utility Assessment" split, $\$ 1,675$ will be assessed to each property where water services are replaced. The estimated cost of the sewer service replacement from the main to the property line is $\$ 3,200$. With the proposed 50/50 "Utility Assessment" split, \$1,600 will be assessed to each property where sewer services are replaced. Thus, a property proposed to receive both a new water service and sewer service would have a proposed "Utility Assessment" of $\$ 3,275$, which is an estimated amount until bids prices are known.

In the case that sanitary sewer services are made of Orangeburg, or are in disrepair, replacement or lining of the entire line will also be required from the property line to the house. On past projects, the property owner has been given one year to address the necessary repairs and the City will provide contact information for contractors that have performed this work within the City.

A preliminary assessment roll is included in Appendix C of this report. Total estimated assessments are $\$ 953,722.18$.

IX. Right-of-Way/Easements/Permits

The majority of the proposed improvements will be limited to the existing street ROW along all corridors. Temporary construction easements may be needed for work outside the street ROW such as driveway apron replacement, grading and turf restoration.

Permits will be required from the Minnesota Pollution Control Agency for grading (National Pollutant Discharge Elimination System permit), Minnesota Department of Health for Water Main Replacement, and the Nine Mile Creek Watershed District for Erosion Control.

X. Project Schedule

If this Preliminary Engineering Report is accepted by the City Council, the following schedule is proposed:

XI. Feasibility and Recommendation

From an engineering standpoint, this project is feasible, cost effective, and necessary and can best be accomplished by letting competitive bids for the work. It is recommended that the work be done under one contract, for all project areas, to complete the work in an orderly and efficient manner. The City, its financial consultant, and the persons assessed will have to determine the economic feasibility of the proposed improvements.

Services Provided:

Civil and Municipal Engineering
Water and Wastewater Engineering
Traffic and Transportation Engineering
Aviation Planning and Engineering
Water Resources Engineering
Coatings Inspection Services
Landscape Architecture Services
Surveying and Mapping
Geographic Information System Services
Funding Assistance

www.bolton-menk.com

Appendix A: Preliminary Cost Estimates

aTY OF HOPKINS, MN
BMI PROJECT NO. OT1.130543

пем мо.	птм	UNT	Untrpag	EsIMAtedcosis												$\begin{aligned} & \text { TOTAL } \\ & \text { QUANIITY } \end{aligned}$	TOTALCost
				EIHAVEN	THAVEN	GHAVEN	1sTsTN	2NDSTN	3FDSTN	ExsIngwalk	3FDSTwalk	sfreitotal	SANTARY	STorM	WAITR		
1	MOBIUZATION	LUMP SUM	\$250,00.00	\$25,000.00	\$25,000.00	\$12,500.00	\$12,500.00	\$12,500.00	\$25,000.00	\$12,500.00		\$125,000.00	\$50,000.00	\$25,000.00	\$50,000.00	1.00	\$250,000.00
2	OEARING	TRE	\$500.00	\$12,000.00	\$16,000.00	\$2,50.00			\$3,000.00		\$2,000.00	\$35,500.00				71	\$35,500.00
3	GRUBBING	TRE	\$250.00	\$6,000.00	\$8,000.00	\$1,250.00			\$1,500.00		\$1,000.00	\$17,750.00				71	\$17,750.00
4	DECDUOUS TREE2" CAL BSB	EACH	\$600.00	\$14,400.00	\$19,200.00	\$3,000.00			\$3,600.00		\$2,400.00	\$42,600.00				71	\$42,600.00
5	REMOVESGNPOST	EACH	\$50.00	\$350.00	\$700.00				\$300.00			\$1,350.00				27	\$1,350.00
6	RemOVESGN PANE	EACH	\$50.00	\$350.00	\$700.00				\$300.00			\$1,350.00				27	\$1,35000
7	REMOVECURB AND GUIITR	UNFT	\$8.00	\$20,088.00	\$36.592.00	\$2,432.00	\$4,992.00	\$4,256.00	\$19,392.00			\$87,752.00				10969	\$87,752.00
8	REMOVEBTUMINOUS DRIVEWAY PAVEMENT	SQ Y	\$10.00	\$70.00	\$70.00				\$1,410.00			\$1,550.00				155	\$1,550.00
9	REMOVEBTUMINOUS SIREET PAVEMENT	SQYD	\$4.00	\$17,216.00	\$33,228.00				\$12,732.00			\$63,876.00				15969	\$63,876.00
10	REMOVECONCREIE WALK	SQFT	\$1.00							\$41,455.00		\$41,455.00				41455	\$41,455.00
11	REMOVECONCREIESTEP	EACH	\$20.00							\$1,720.00		\$1,720.00				86	\$1,720.00
12	REMOVE CONCRITEALLYY/DRVEWAY PAVEMENT	SQY	\$12.00	\$2,016.00	\$1,092.00				\$4,080.00			\$7,188.00				599	\$7,188.00
13	REMOVE CONCREIEUGGTT POLF FOUNDATON	EACH	\$1,000.00		\$1,000.00							\$1,000.00				1	\$1,000.00
14	SALVAGEUGHT POLE	EACH	\$750.00		\$750.00							\$750.00				1	\$750.00
15	SALVAGE RENSTALI PAVER	SQF	\$15.00		\$1,590.00							\$1,590.00				106	\$1,590.00
16	SAWING CONCREIE PAVEMENT (FULLDEPTH)	UNFT	\$7.00	\$1,820.00	\$2,513.00	\$630.00			\$1,197.00			\$6,160.00				880	\$6,160.00
17	SAWING BITUMINOUS PAVEMENT (FULDEPTH)	UNFT	\$6.00	\$816.00	\$852.00	\$756.00	\$510.00	\$1,374.00	\$906.00			\$5,214.00				869	\$5,214.00
18	SALVAGE\& RENSTALL FENCE	UNFT	\$100.00	\$4,000.00	\$5,00.00						\$7,000.00	\$16,000.00				160	\$16,000.00
19	REMOVEREAINING WALI	UNFT	\$25.00		\$11,875.00							\$11,875.00				475	\$11,875.00
20	SALVAGE \& RENSTALL BLOCKRETAINING WAL	UNFT	\$150.00	\$16,350.00	\$75,450.00							\$91,800.00				612	\$91,800000
21	ReMOVEHIDRANT	EACH	\$750.00												\$6,000.00	8	\$6,000.00
22	REMOVE WAITRMAN	UNFT	\$12.00												\$43,056.00	3588	\$43,056.00
23	REMOVE DRAINAGE STRUCTURE(STORM)	EACH	\$600.00											\$27,000.00		45	\$27,000.00
24	ReMOVESTORM SEWERPPE	UNFT	\$15.00											\$18,105.00		1207	\$18,105.00
25	REMOVE SANTTARY SEWER PIPE	UNFT	\$10.00										\$29,970.00			2997	\$29,970.00
26	REMOVE SANTARY MANHOLE	EACH	\$750.00										\$10,500.00			14	\$10,500.00
27	EXPLOPATORY Y XCAVATION	HOUR	\$1,000.00	\$20,000.00	\$20,000.00							\$40,000.00				40	\$40,000.00
28	COMMON EXCAVATON	Qub	\$30.00	\$94,140.00	\$182,220.00				\$67,740.00			\$344,100.00				11470	\$344,100.00
29	SUBGRADEEXCAVATON	OVD	\$35.00	\$5,495.00	\$10,640.00	\$2,695.00			\$3,955.00			\$22,785.00				651	\$22,785.00
30	RECAM BITUMINOUS SURFACEIIN PLACE)	SQY	\$3.00			\$6,936.00						\$6,936.00				2312	\$6,936.00
31	SUBGRADE PREPARATON	SQY	\$2.00			\$4,624.00						\$4,624.00				2312	\$4,624.00
32	GEOTEXTLEFABRICTPEV	SQYD	\$2.00	\$7,744.00	\$15,192.00				\$5,904.00			\$28,840.00				14420	\$28,840.00
33	STABIUZNG AGGREGATE	aub	\$50.00	\$7,850.00	\$15,200.00				\$5,650.00			\$28,700.00				574	\$28,700.00
34	StECT GRANULAR BORROW	TON	\$20.00	\$47,060.00	\$92,300.00				\$35,880.00			\$175,240.00				8762	\$175,240.00
35	aASS5 AGGREGATEBASE	TON	\$24.00	\$37,824.00	\$74,208.00	\$3,360.00			\$28,848.00			\$144,240.00				6010	\$144,240.00
36	QASS2 2 AGGREGATESURFACNG (GRAVEL DRVEWAM)	TON	\$40.00						\$400.00			\$400.00				10	\$400.00
37	BTUMINOUSWEARING COURSE (SPWEA240C)	TON	\$92.00	\$43,148.00	\$84,640.00	\$25,668.00	\$28,612.00	\$36,708.00	\$32,936.00			\$251,712.00				2736	\$251,712.00
38	BTUMINOUS-NON-WEARING COURSE (SPNWB2300)	TON	\$88.00	\$41,272.00	\$80,960.00	\$36,872.00			\$31,504,00			\$190,608.00				2166	\$190,608.00
39	BTUMINOUSMATEPALFOR TACKCOAT	GAL	\$7.50	\$1,597.50	\$3,135.00	\$960.00	\$1,695.00	\$2,175.00	\$1,222.50			\$10,785.00				1438	\$10,785.00
40	2 " BTUMINOUSSTRETPATCH	SQTC	\$35.00				\$22,435.00	\$28,840.00				\$51,275.00				1465	\$51,275.00
41	MILIBTUMINOUSSURFAEE (2")	SQY	\$3.00				\$7,692.00	\$9,882.00				\$17,574.00				5858	\$17,574.00
42	3"BITUMINOUSDRIVEWAY	SQY	\$40.00		\$400.00				\$1,720.00			\$2,120.00				53	\$2,120.00
43	JOINT ADHESVE (MASTIC)	UNFT	\$1.00	\$2,50.00	\$4,27.00	\$1,194.00	\$1,674.00	\$1,823.00	\$1,855.00			\$13,321.00				13321	\$13,321.00
44	MODULAR BLOCKRETAINING WAL	SQF	\$550.00		\$66,700.00							\$66,700.00				1334	\$666,700.00
45	POUREDCONCREIEREAANING WALL	SQF	\$550.00		\$20,400.00							\$20,400.00				408	\$20,400.00
46	6" PEREP PVCUNDERDRAIN	UNFT	$\$ 25.00$ $\$ 40000$													2700	$\begin{array}{r}\$ 67,500.00 \\ \$ 112000 \\ \hline\end{array}$
47	6" Prer PVCunderdrain aEANOU	EACH	\$400.00											\$11,200.00		28	\$11,200.00
48	${ }^{15}{ }^{\text {² }}$ RCSTORM P1PE	UNFT	\$80.00											\$129,680.00		1621	\$ $\$ 129,680.00$
49		LNFT	$\$ 95.00$ $\$ 120.00$											$\frac{\$ 12,730.00}{\$ 7,5600}$		$\frac{134}{63}$	\$12,730.00 $\$ 77,560.00$
51	36" RCSTORM PIPE	UNFT	\$\$50.00											$\xrightarrow{\$ 21,600.00}$		144	\$22,600.00
52	STORM MANHOEE (48-4020)	EACH	\$4,500.00											\$18,000.00			\$18,000.00
53	STORM MANHOLE(60-4020)	EACH	\$5,500.00											\$22,000.00			\$22,00000
54	STORM MANHOLECATCH BASIN (48-4022)	EACH	\$4,500.00											\$99,000.00		22	\$99,000.00
55	STORM MANHOLECATCHBASIN (72-4022)	EACH	\$8,000.00											\$8,000.00		1	\$8,000.00
56	STORM CATCHBASIN	EACH	\$2,500.00											\$62,500.00		25	\$66,500.00
57	INSTALCASTING (R-3067)(STORM)	EACH	\$1,200.00											\$56,400.00		47	\$56,400.00
58	INSTALLCASTING (R-3067-C)(STORM)	EACH	\$1,200.00											\$8,40.00		7	\$8,400.00
59 60	INSTALCASTING (R-1733)(STORM)	EACH	\$1,200.00											\$15,600.00		13	\$15,60000
60		EACH	\$1,200.00 800.00											$\$ 1,200.00$ $\$ 4,800.00$		1	\$1,200000 $\$ 4,80000$
	AJUsmamedill													\$4,800.00		6	\$4,800.00

aTY OF HOPKINS, MN
BMI PROJECT NO. OT1.130543

пем No .	пем	UNT	Uxt Price	EsIMATIEDCOSTS												$\begin{aligned} & \text { TOTAL } \\ & \text { QUANIIY } \end{aligned}$	totalcost
				Sthaven	thaven	बHaven	15TSTN	2NDSTN	3FDSTN	exstingwaik	3RDStwalk	Strextotal	SANTARY	storm	WAITR		
62	CONNECTTOEXSTINGSTORM PIPE	EACH	\$1,200.00											\$9,600.00		8	\$9,600.00
63	CONNECTTO EX STING STORM STRUCTURE	EACH	\$1,500.00											\$16,500.00		11	\$16,500.00
64	$8^{\prime \prime}$ PVC SDR 35 SANTTARY SEWER PIPE	UNFT	\$70.00										\$210,630.00			3009	\$210,630.00
65	COARSE AGGREGATE BEDDING (TTPE B)	UNFT	\$15.00										\$4,500.00			300	\$4,500.00
66	$8^{\prime \prime}$ CPP LINING (CTYWWIDEUNING)	UNFT	\$60.00										\$60,000.00			1000	\$60,000.00
67	SEALSANTARY MANHOLE	EACH	\$2,500.00										\$15,000.00			6	\$15,000.00
68	6" PVC SDR 26 S SANTARY SEWER SRPVCEPPIP	UNFT	\$50.00										\$166,550.00			3331	\$166,550.00
69	8"X6" SDR 26PVC SRRVCEWE	EACH	\$1,000.00										\$101,000.00			101	\$101,000.00
70	INSTALCASTNG (R-1733)(SANTARY	EACH	\$1,500.00										\$27,000.00			18	\$27,000.00
71	SANTARY MANHOLE	UNFT	\$600.00										\$70,800.00			118	\$70,800.00
72	RECONNECT SANTARY SEWER SERVCE	EACH	\$700.00										\$70,700.00			101	\$70,700.00
73	SANTARY SRMVEERPAIR	EACH	\$1,200.00										\$13,200.00			11	\$13,200.00
74	CONNECTTO EXSING SANTARY SEWER PIPE	EACH	\$1,500.00										\$7,500.00			5	\$7,500.00
75	CONNECT TOEXSTING SANTARY MANHOLE	EACH	\$2,000.00										\$2,000.00			1	\$2,000.00
76	HIDRANT	EACH	\$7,500.00												\$67,500.00	9	\$67,500.00
77	DUCTIE IRON FTTINGS	POUND	\$15.00												\$226,430.00	1762	\$22,430.00
78	6" GATEVALVE \& BOX	EACH	\$2,500.00												\$22,500.00	9	\$22,500.00
79	8" ${ }^{\text {G }}$ ATE VALVE \& BOX	EACH	\$3,500.00												\$770,000.00	20	\$70,000.00
80	6" DP WATERMAIN	UNFT	\$75.00												\$7,950.00	106	\$7,950.00
81	8" DP P WATERMAIN	UNF	\$85.00												\$296,905.00	3493	\$296,905.00
82	1"TPPEK COPPERSERVIEPPE	UNF	\$50.00												\$184,200.00	3684	\$184,200.00
83	1" CURB STOP \& BOX	EACH	\$750.00												\$84,000.00	112	\$84,000.00
84	1" CORPORATON STOP	EACH	\$500.00												\$56,000.00	112	\$56,000.00
85	GROUNDING ANODE	EACH	\$250.00												\$30,000.00	120	\$30,000.00
86	TRACER WIIEACCESS BOX (NON ROADWAM)	EACH	\$150.00												\$16,800.00	112	\$16,800.00
87	TRACER WIRE TES STATON (HIDRAN)	EACH	\$300.00												\$2,700.00	9	\$2,700.00
88	RECONNECTWATER SREVCE	EACH	\$600.00												\$67,200.00	112	\$67,200.00
89	CONNECTTOEXSING WATTRMAIN	EACH	\$2,000.00												\$16,000.00	8	\$16,000.00
90	TEMPORARY WATTR SRRVCE	EACH	\$500.00												\$56,000.00	112	\$56,000.00
91	4" CONCREIE WALK	SQFT	\$8.00							\$361,344,00	\$7,920.00	\$369,264.00				46158	\$369,264.00
92	CONCREIESTEP	EACH	\$500.00							\$43,000.00		\$43,000.00				86	\$43,000.00
93	CONCREIECORB \& GUITR DESSGNB618	UNFT	\$20.00											\$219,380.00		10969	\$219,380.00
94	$6^{\prime \prime}$ CONCREIEWALLS (PEDRAMPS)	SQY	\$120.00							\$45,000.00	\$7,200.00	\$52,200.00 $\$ 027500$				435	$\$ 52,20.00$ $\$ 2027500$
95	$6^{\prime \prime}$ CONCREIEDRVEWAY	SQYO	\$75.00	\$13,275.00	\$9,300.00				\$17,700.00			\$40,275.00				537	\$40, 275.00
96	8"CONCREIE DRVEWAY/ALIEY	SQYD	\$85.00						\$16,575.00			\$16,575.00				195	\$16,575.00
97	TRUNCATED DOME	SQFT	\$70.00							\$29,120.00	\$10,640.00	\$39,760.00				568	\$39,760.00
98	TRAFFICCONTROL	LUMP SUM	\$50,000.00	\$5,000.00	\$5,000.00	\$2,500.00	\$2,500.00	\$2,500.00	\$5,000.00	\$2,500.00		\$ \$25,000.00	\$10,000.00	\$5,000.00	\$10,000.00	1.00	\$50,000.00
99	SGNPOST	EACH	\$400.00	\$2,800.00	\$5,600.00				\$2,400.00			\$10,800.00				27	\$10,800.00
100	SGN PANES	EACH	\$300.00	\$2,100.00	\$4,200.00				\$1,800.00			\$8,100.00				27	\$8,100.00
101	UGHT POLEFOUNDATON	EACH	\$1,500.00		\$1,500.00							\$1,500.00				1	\$1,500.00
102	INSTALUGGTTPOLE	EACH	\$1,500.00		\$1,500.00							\$1,500.00				1	\$1,500.00
103	LDUMINARE FIXTURE	EACH	\$1,500.00		\$1,500.00							\$1,500.00				1	\$1,500.00
104	STREETSWEPPR WTTHOPERATOR	HOUR	\$175.00	\$4,375.00	\$4,375.00	\$875.00	\$875.00	\$875.00	\$875.00			\$12,250.00				70	\$12,250.00
105	STABIUZDCONSTRUCTON EXT	EACH	\$2,000.00	\$8,000.00	\$14,000.00	\$8,000.00			\$8,000.00			\$38,000.00				19	\$33,000.00
106	STORM DRAININLET PROTECTON	EACH	\$250.00	\$7,750.00	\$13,000.00	\$7,750.00	\$750.00	\$500.00	\$500.00			\$30,250.00				121	\$30,250.00
107	TOPSOOLEORROW (SPECAL)	OYD	\$40.00	\$6,400.00	\$10,760.00	\$5,400.00	\$1,200.00	\$1,320.00	\$10,280.00			\$35,360.00				884	\$35,360.00
108	HDROSEEDING	SQYo	\$3.00			\$954.00	\$807.00	\$888.00				\$2,649.00				883	\$2,699.00
109	SODDING, TTPELAWN	SQYD	\$10.00	\$13,940.00	\$24,410.00				\$23,360.00			\$661,710.00				6171	\$61,771.00
110	FABRICATED RAIUNG	UNFT	\$100.00	\$3,600.00	\$10,000.00							\$13,600.00				136	\$13,600.00
111	LANDSCAPEALOWANG	LUMP SUM	\$50,000.00	\$20,000.00	\$20,000.00	\$2,500.00	\$2,500.00	\$2,500.00	\$2,500.00			\$50,000.00				1	\$50,000.00
112	CROSSWALK SPECAL - TAM PED BITUMINOUS	SQFT	\$50.00	\$44,600.00								\$44,600.00				292	\$14,600.00
113	4" SOLD WHITESTRPING - THERMOPLASIC	UNF	\$1.00				\$1,665.00					\$1,665.00				1665	\$1,655.00
114	24" SOUD WHITE ETOP BAR- THREMOPLASTC	UNFT	\$60.00	\$1,080.00								\$1,080.00				18	\$1,080.00
115	CROSSWALKWHITE-THERMOPLASTIC	SQFT	\$15.00		\$5,670.00	\$5,400.00	\$1,350.00	\$1,350.00				\$13,770.00				918	\$13,770.00
				\$ 532,026.50	\$1,041,397.00	\$ 138,756.00	\$ 91,757.00	\$ 107,491.00	\$ 380,021.50	\$ 536,639.00	\$ 38,160.00	\$ 2,866,248.00	\$ 849,350.00	\$ 866,755.00	\$1,113,241.00		\$5,695,594.00
SUBTOTALContingencies (15\%)				\$ 79,803.98	\$ 156,209.55	\$ 20,813.40	\$ 13,763.55	\$ 16,123.65	\$ 57,003.23	\$ 80,495.85	5,724.00	\$ 429,937.20	\$ 127,402.50	\$ 130,013.25	\$ 166,986.15		\$ 854,339.10
ENGINEERING AND ADMIIISTRATION (20\%)				\$ 122,366.10	\$ 239,521.31	31,913.88	\$ 21,104.11	24,722.93	87,404.95	\$ 123,426.97	8,776.80	\$ 659,237.04	\$ 195,350.50	\$ 199,353.65	\$ 256,045.43		\$ 1,309,986.62
TOTAL ESTIMATED PROJECT COST				\$ 734,196.57	\$ 1,437,127.86	\$ 191,483.28	\$ 126,624.66	\$ 148,337.58	\$ 524,429.67	\$ 740,561.82	\$ 52,660.80	\$ 3,955,422.24	\$ 1,172,103.00	\$ 1,196,121.90	\$ 1,536,272.58		\$ 7,859,919.72

Appendix B: Figures

EXISTING FIGURES

PROPOSED FIGURES

	CURB \& GUTTER
BITUMINOUS PAVEMENT	

8TH AVE N

7TH AVE N

TREE REMOVAL LEGEND				
REMOVAL DUE TO CONSTRUCTION IMPACTS	ℓ	REMOVAL DUE TO POOR HEALTH/CONDITION	\qquad Removaldue to conflict WITH UTILITY LINES	REMOVAL - ASH TREE

6TH AVE N

2ND ST N

Appendix C: Preliminary Assessment Roll

PREIMINARY ASSESSMENTROL

2024 CENIRALAVENUES IMPROVEMENIS

GTY OF HOPKINS, MN
QTY PROJECT NO. 2023-010
BMI PROJECT NO. OT1. 130543

PID	PROPERTY ADDRESS	TAXPAYR NAME	TAXPAYER ADDRESS(UNE 1)	TAXPAYERADDRESS(UNE2)	TAXPAYER ADDRESS (UNE 3)	$\begin{array}{\|c\|} \hline \text { PROPOSEDSIRETT } \\ \text { ASSESSMENT } \\ \hline \end{array}$			PROPOSEDWATER SRMCE ASSESSMENT	PROPOSEDSEWERSTRMCE ASSESSMENT		TOTAL PROPOSEDASSESMENT	
2411722130040	607 2ND STREET NORTH	MATTHEW SLAMA	607 2ND ST N	HOPKINS MN 55343		\$	3,784.54	\$		\$		\$	3,784.54
2411722130041	621 2ND STREET NORTH	EDWARD T GIWOYNA	621 2ND ST N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722130085	801 2ND STREET NORTH	TYLER DALE BREN	801 2ND ST N	HOPKINS MN 55343		\$	1,284.14	\$	1,675.00	\$	1,600.00	\$	4,559.14
2411722130020	202 5TH AVENUE NORTH	MATTHEW BRADLEY MILLER	SARAH BRIANNE STOUT MILLER	2025 TH AVE N	HOPKINS MN 55343	\$	3,784.54		\$ -	\$	-	\$	3,784.54
2411722130019	2065 5TH AVENUE NORTH	NANCY LYNNETTE MILLER	2065 TH AVE N	HOPKINS MN 55343		\$	3,784.54	\$	\$	\$		\$	3,784.54
2411722130018	210 5TH AVENUE NORTH	BRUCE G THIES	210 5TH AVE N	HOPKINS MN 55343		\$	3,784.54	\$	\$	\$		\$	3,784.54
2411722130017	2145 SH AVENUE NORTH	MARY STONE	217A ASBURY ST	HOUSTON TX 77007		\$	3,784.54			\$		\$	3,784.54
2411722130016	2185 5TH AVENUE NORTH	LINDA K WELSCH	1383 HWY 58	P.O. BOX 187	DANNEBROG NE 68831	\$	3,784.54	\$	\$ -	\$	-	\$	3,784.54
2411722130015	222 5TH AVENUE NORTH	DAVID D BARTEN	KRISTINA M BARTEN	222 5TH AVE N	HOPKINS MN 55343	\$	3,784.54	\$	\$	\$	-	\$	3,784.54
2411722130014	2265 TH AVENUE NORTH	D J DOLINA \& A E DOLINA	226 5TH AVE N	HOPKINS MN 55343		\$	3,784.54		\$	\$	- -	\$	3,784.54
2411722130013	2305 5TH AVENUE NORTH	JUSTIN WINZENBURG	JILL WINZENBURG	2305 TH AVE N	HOPKINS MN 55343	\$	3,784.54	\$		\$		\$	3,784.54
2411722130012	2345 TH AVENUE NORTH	SUSAN J OWEN	BASIL A OWEN III	234 5TH AVE N	HOPKINS MN 55343	\$	3,784.54	\$	\$ -	\$	-	\$	3,784.54
2411722130011	2385 5TH AVENUE NORTH	ANNETTE R WELLS	2385 TH AVE N	HOPKINS MN 55343		\$	3,784.54	\$	\$	\$		\$	3,784.54
2411722130010	2425 5TH AVENUE NORTH	JOHN M AHLFS	242 5TH AVE N	HOPKINS MN 55343		\$	3,784.54	\$	\$ -	\$	-	\$	3,784.54
2411722130009	2465 TH AVENUE NORTH	HERBERT H \& FRANCES L HESCH	246 N 5TH AVE	HOPKINS MN 55343		\$	3,784.54	\$	\$ -	\$	- -	\$	3,784.54
2411722130145	300 5TH AVENUE NORTH	DAKARAIK BROWN	LAURA A BROWN	300 5TH AVE N	HOPKINS MN 55343	\$	3,784.54		\$ -	\$		\$	3,784.54
2411722130021	2016 TH AVENUE NORTH	JOSEPH F RINALDI III	201 6TH AVE N	HOPKINS MN 55343		\$	3,784.54			\$		\$	3,784.54
2411722130022	2096 GTH AVENUE NORTH	KATLYN MALAM \& DANIEL MALAM	2096 TH AVE N	HOPKINS MN 55343		\$	3,784.54	\$	\$ -	\$		\$	3,784.54
2411722130039	2106 TH AVENUE NORTH	KELLY ELAMB	210 6TH AVE N	HOPKINS MN 55343		\$	3,784.54	\$	\$	\$		\$	3,784.54
2411722130038	2146 TH AVENUE NORTH	JEANNE TERHAAR	2146 TH AVE	HOPKINS MN 55343		\$	3,784.54		\$	\$		\$	3,784.54
2411722130023	2156 TH AVENUE NORTH	TIMOTHY PAUL HOFFMAN	215 6TH AVEN	HOPKINS MN 55343		\$	3,784.54		\$	\$	-	\$	3,784.54
2411722130024	221 6TH AVENUE NORTH	MICHAEL JESTOMBA	2216 TH AVE N	HOPKINS MN 55343		\$	3,784.54	\$	\$	\$	-	\$	3,784.54
2411722130037	2246 TH AVENUE NORTH	CHRISTOPHER M VENJOHN	NATALYA SHARMA VENJOHN	224 6TH AVE N	HOPKINS MN 55343	\$	3,784.54		\$	\$		\$	3,784.54
2411722130025	2256 TH AVENUE NORTH	GLORIA J CONNOR	2256 TH AVE NO	HOPKINS MN 55343		\$	3,784.54			\$		\$	3,784.54
2411722130036	226 6TH AVENUE NORTH	LISA M LARSON	226 6TH AVE N	HOPKINS MN 55343		\$	3,784.54	\$	\$	\$	-	\$	3,784.54
2411722130026	2296 TH AVENUE NORTH	KEVIN R WEHBER	RACHEL A WEHBER	229 6TH AVE N	HOPKINS MN 55343	\$	3,784.54	\$	\$	\$		\$	3,784.54
2411722130035	2306 TH AVENUE NORTH	ANTONIA E CELESTINE BARLAGE	ANDRW ROBERT BARLAGE	230 6TH AVE N	HOPKINS MN 55343	\$	3,784.54		\$	\$	-	\$	3,784.54
2411722130027	2336 TH AVENUE NORTH	MICHAEL T \& INGRID Y BROWN	233 6TH AVEN	HOPKINS MN 55343		\$	3,784.54		\$	\$		\$	3,784.54
2411722130034	2346 TH AVENUE NORTH	CHARLESEDORN	234 6TH AVE N	HOPKINS MN 55343		\$	3,784.54	\$	\$	\$	-	\$	3,784.54
2411722130028	237 6TH AVENUE NORTH	GREGORY V CHAMBERLIN	237 6TH AVE N	HOPKINS MN 55343		\$	3,784.54	\$	\$	\$		S	3,784.54
2411722130033	238 6TH AVENUE NORTH	LAURIE R ERICKSON	238 6TH AVEN	HOPKINS MN 55343		\$	3,784.54		\$ -	5		\$	3,784.54
2411722130029	2416 6H AVENUE NORTH	STEVEN J \& JULIE B HRUSKA	2416 TH AVE N	HOPKINS MN 55343		\$	3,784.54	\$	\$	\$	-	\$	3,784.54
2411722130032	242 6TH AVENUE NORTH	ZACHARY E LEIRDAHL	AKEXANDRA K NAAS	242 6TH AVE N	HOPKINS MN 55343	\$	3,784.54	\$	\$	\$		\$	3,784.54
2411722130030	2456 TH AVENUE NORTH	JOSHUA J DOBBINS	MICHELLE LDOBBINS	245 6TH AVE N	HOPKINS MN 55343	\$	3,784.54	\$		\$		\$	3,784.54
2411722130031	2466 TH AVENUE NORTH	DOUGLAS NHIEN NGUYEN	2466 TH AV N	HOPKINS MN 55343		\$	3,784.54	\$	\$	\$	-	\$	3,784.54
2411722130138	302 6TH AVENUE NORTH	AMBERL RISHAVY	302 6TH AVE N	HOPKINS MN 55343		\$	1,504.59	\$	\$	\$	-	\$	1,504.59
2411722130146	3036 TH AVENUE NORTH	SAMUEL OSTLUND	JULIA OSTLUND	303 6TH AVE N	HOPKINS MN 55343	\$	1,504.59	\$	\$	\$	- -	\$	1,504.59
2411722420035	117 7H AVENUE NORTH	AE \& M PROPERTIES LLC	8320 KELZER POND DR	VICTORIA MN 55386		\$	6,963.84	\$	3,850.00	-	3,200.00	\$	14,013.84
2411722420034	137TH AVENUE NORTH	AE\&M PROPERTIES LLC	8320 KELZER POND DR	VICTORIA MN 55386		\$	5,200.86	\$	1,675.00	\$	1,600.00	\$	8,475.86
2411722420036	177 TH AVENUE NORTH	RAELA SCHOENHERR	17 7TH AVE	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722420047	187TH AVENUE NORTH	KYLIE ESWANSON	18 7TH AV N	HOPKINS MN 55343		\$	7,960.50	\$	1,675.00	\$	1,600.00	\$	11,235.50
2411722420037	21 7TH AVENUE NORTH	ERIC WERGIN	217 TH AVEN	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722420046	22 7TH AVENUE NORTH	MICHAEL R PETERSEN	22 7TH AVE N	HOPKINS MN 55343		\$	3,608.76	\$	1,675.00		1,600.00	\$	6,883.76
2411722420038	257 TH AVENUE NORTH	JAMES SEALE \& KATE SEALE	25 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722420045	267 7H AVENUE NORTH	KIRSTEN S EICKENBERG	26 7TH AVEN	HOPKINS MN 55343		\$	6,368.40	\$	1,675.00	\$	1,600.00	\$	9,643.40
2411722420039	297 TH AVENUE NORTH	TINA M WATTS/DANIEL J WATTS	297 TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00		1,600.00	\$	8,582.00
2411722420044	307 TH AVENUE NORTH	KATHLEEN J HINES	JOHN HINES III	307 7H AVE N	HOPKINS MN 55343	\$	4,245.60	\$	1,675.00	\$	1,600.00	\$	7,520.60
2411722420040	337 TH AVENUE NORTH	ANDREW \& ELIZABETH FISCHER	337 TH AVE	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722420043	347 TH AVENUE NORTH	ROBERT D ROSSBOROUGH	347 TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722420041	37 7TH AVENUE NORTH	CLIFFORD A \& TONI M TALLMAN	37 7TH AVEN	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722420042	387 TH AVENUE NORTH	DALE \& JEAN SEARLES	387 7TH AVE NO	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722420139	101 7TH AVENUE NORTH	AMY N \& JON BAUGH	101 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$		\$		\$	5,307.00
2411722420114	102 7TH AVENUE NORTH	MICHAEL JULES ERICKSON	102 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	-	\$	6,982.00

PREIMINARY ASSESSMENTROLL

2024CENTRALAVENUESIMPROVEMENIS

GTY OF HOPKINS, MN
QTY PROJECT NO. 2023-010
BMI PROJECT NO. OT1. 130543

PID	PROPERTY ADDRESS	TAXPAYR NAME	TAXPAYERADDRESS (UNE 1)	TAXPAYERADDRESS (UNE 2)	TAXPAYERADDRESS(UNE3)	$\begin{array}{\|c\|} \hline \text { PROPOSEDSIRET } \\ \text { ASSESSMENT } \end{array}$		PROPOSEDWATR SRMCE ASSESSMENT		PROPOSEDSEWERSERMCEASSESSMENT		TOTALPROPOSEDASSESSMENT	
2411722420140	105 7TH AVENUE NORTH	MEAGAN MCMAHAN	1057 TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$		\$	6,982.00
2411722420113	106 7TH AVENUE NORTH	MATTHEW S HANSON	KATIE C HANSON	4200 SHADY OAK RD S	MINNETONKA MN 55343	\$	5,307.00	\$	1,675.00	\$		\$	6,982.00
2411722420141	109 7TH AVENUE NORTH	MICHAEL D ESSEN	109-7TH AVE NO	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$		\$	6,982.00
2411722420112	110 7TH AVENUE NORTH	MRS ROBERT (KATHLEEN) CASHIN	110 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	-	\$	6,982.00
2411722420142	113 7TH AVENUE NORTH	DEAN E EMPANGER	1137 TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$		\$	6,982.00
2411722420111	114 7TH AVENUE NORTH	MARK E DOBBINS	SARA L KRALEWSKI	1147 7TH AVE N	HOPKINS MN 55343	\$	5,307.00	\$	1,675.00	\$		\$	6,982.00
2411722420143	117 7TH AVENUE NORTH	THEODORE M \& SUSAN J JOHNSON	117 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$		\$	6,982.00
2411722420110	118 7TH AVENUE NORTH	118 HOPKINS LLC	535 EVERGREEN LA N	PLYMOUTH MN 55441		\$	5,307.00	\$	1,675.00	\$		\$	6,982.00
2411722420144	121 7TH AVENUE NORTH	MICHAEL OPHEIM/CARRIE OPHEIM	121 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$		\$	6,982.00
2411722420109	122 7TH AVENUE NORTH	SHAWN B \& SUE R NORMANDIN	122 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$		\$	6,982.00
2411722420145	125 7TH AVENUE NORTH	JOHN R \& LORETTA WOODSTROM	125 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722420108	126 7TH AVENUE NORTH	RYAN M FITZGERALD	126 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722420146	129 7TH AVENUE NORTH	JACQUES A \& CHERYL L YOUAKIM	129 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722420107	130 7TH AVENUE NORTH	DYLAN BARNES-HANSEN	JOCELYN BARNES-HANSEN	1307 TH AVE N	HOPKINS MN 55343	\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722420147	133 7TH AVENUE NORTH	COLLEEN M JENSEN	133 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722420106	1347 7TH AVENUE NORTH	LAUREN PANZER	1347 TH AVEN	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722420148	137 7TH AVENUE NORTH	RONALD D \& SHERIL SALARGO	137 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722420105	138 7TH AVENUE NORTH	COLE NIELSEN	138 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722420149	1417 7TH AVENUE NORTH	BRANDON L WILLS	JESSICA E WILLS	141 7TH AVE N	HOPKINS MN 55343	\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722420104	142 7TH AVENUE NORTH	ROGER G KUMM	142 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722420150	145 7TH AVENUE NORTH	NICOLE FORSYTHE	CHRISTOPHER FORSYTHE	1467 7H AVE N	HOPKINS MN 55343	\$	5,200.86	\$	1,675.00	\$	1,600.00	\$	8,475.86
2411722420103	146 7TH AVENUE NORTH	NICOLE E FORSYTHE	CHRISTOPHER M FORSYTHE	146 7TH AVE N	HOPKINS MN 55343	\$	5,200.86	\$	1,675.00	\$	1,600.00	\$	8,475.86
2411722130063	202 7TH AVENUE NORTH	TIMOTHY W COATS	202 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722130042	205 7TH AVENUE NORTH	LORI BARON	2081 MEETING STREET	WAYZATA MN 55391		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722130062	206 7TH AVENUE NORTH	JOEY A WIRTH	20885 CHANNEL DR	GREENWOOD MN 55331		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722130043	209 7TH AVENUE NORTH	THOMAS C RUSTAD	CODY M RUSTAD	2097 TH AVE N	HOPKINS MN 55343	\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722130061	210 7TH AVENUE NORTH	ANNA VLADIMIROVNA BULOCHNIK	YEVGENY BULOCHNIK	210 7TH AVE N	HOPKINS MN 55343	\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722130044	213 7TH AVENUE NORTH	KARIN L VAVRICHEK	213 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722130060	214 7TH AVENUE NORTH	LINDSEY CHIPKA	214 7TH AVE N	HOPKINS MN 55343		\$	5,625.42	\$	1,675.00	\$	1,600.00	\$	8,900.42
2411722130045	217 7TH AVENUE NORTH	KELLY D HEIKKILA	217 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722130059	218 7TH AVENUE NORTH	SCOTT A BARTELLS	STEPHANIE A BARTELLS	218 7TH AVE N	HOPKINS MN 55343	\$	4,776.30	\$	1,675.00	\$	1,600.00	\$	8,051.30
2411722130046	221 7TH AVENUE NORTH	DEBRAH W \& JAMES A GENELLIE	221 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722130058	222 7TH AVENUE NORTH	PATRICK TIMMERS	ELLEN TIMMERS	222 7TH AVE N	HOPKINS MN 55343	\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722130047	225 7TH AVENUE NORTH	JOHN \& MARJORIE RACKLIFFE	225 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722130057	226 7TH AVENUE NORTH	GILI MUSSMAN	RILEY PETERSON	226 7TH AVE N	HOPKINS MN 55343	\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722130048	229 7TH AVENUE NORTH	PETER M AMES \& AMY J AMES	229 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722130056	232 7TH AVENUE NORTH	YUNSHA HE \& YING CHEN	1661 WEST 63RD STREET	EXCELSIORMN 55331		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722130049	233 7TH AVENUE NORTH	PAOLO LOVAGNINI	233 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722130055	234 7TH AVENUE NORTH	BETH A BEATTY	234 7TH AVEN	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722130050	237 7TH AVENUE NORTH	JULIE ANN BOEHMER	237 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722130054	238 7TH AVENUE NORTH	MELODIE BARD	238 7TH AVE N	HOPKINS MN 55343		\$	5,307.00	\$	1,675.00	\$	1,600.00	\$	8,582.00
2411722130051	2417 7tH AVENUE NORTH	VICTORIAR BENJAMIN TWOGOOD	2417 TH AVE N	HOPKINS MN 55343		\$	4,776.30	\$	1,675.00	\$	1,600.00	\$	8,051.30
2411722130053	242 7TH AVENUE NORTH	CRAIG BAUNE	242 7TH AVE N	HOPKINS MN 55343		\$	9,552.60	\$	1,675.00	\$	1,600.00	\$	12,827.60
2411722130052	245 7TH AVENUE NORTH	EDITH M BEECHER	245 7TH AVE N	HOPKINS MN 55343		\$	4,776.30	\$	1,675.00	\$	1,600.00		8,051.30
2411722130124	300 7TH AVENUE NORTH	LAURA SADLER	3007 TH AVE N	HOPKINS MN 55343		\$	2,109.87	\$	1,675.00	\$	1,600.00	\$	5,384.87
2411722130139	303 7TH AVENUE NORTH	JUNIPER LAND TRUST LLC	5576 BRISTOL LANE	MINNETONKA MN 55343		\$	2,109.87	\$	1,675.00	\$	1,600.00	\$	5,384.87
2411722130123	304 7TH AVENUE NORTH	GINGER LYNN WORWA	3047 TH AVE N	HOPKINS MN 55343		\$	2,109.87	\$	1,675.00	\$	1,600.00	\$	5,384.87
2411722130140	307 7TH AVENUE NORTH	HEINZ RICHTER \& MONIKA KOPEC	307 7TH AVE N	HOPKINS MN 55343		\$	2,109.87	\$	1,675.00	\$	1,600.00	\$	5,384.87
2411722130141	309 7TH AVENUE NORTH	CHRISTOPHER J GILSON	TERRIG GILSON	309 7TH AVE N	HOPKINS MN 55343	\$	2,109.87	\$	1,675.00	\$	1,600.00	\$	5,384.87
2411722130122	310 7TH AVENUE NORTH	MARK C Jones	3107 TH AVE N	HOPKINS MN 55343		\$	3,171.27	\$	1,675.00	\$	1,600.00	\$	6,446.27
2411722130142	313 7TH AVENUE NORTH	JERALD P \& GAYLE L SEABERG	3137 TH AVE NO	HOPKINS MN 55343		\$	2,109.87	\$	1,675.00	\$	1,600.00	\$	5,384.87
2411722130121	314 7TH AVENUE NORTH	MARSHALL DAVIS	3147 TH AVE N	HOPKINS MN 55343		\$	1,154.61	\$	1,675.00	\$	1,600.00	\$	4,429.61
2411722130120	316 7TH AVENUE NORTH	ROSE KELLY	316 7TH AVE N	HOPKINS MN 55343		\$	2,109.87	\$	1,675.00	\$	1,600.00	\$	5,384.87

PREIMINARY ASSESSMENTROL

2024CENIRALAVENUESIMPROVEMENIS

GTY OF HOPKINS, MN

GTY PROJECT NO. 2023-010

BMI PROJECT NO. OTL. 130543

PID	PROPERTY ADDRESS	TAXPAYRRNAME	TAXPAYER ADDRESS(UNE 1)	TAXPAYER ADDRESS(UNE2)	TAXPAYER ADDRESSS(UNE3)		PROPOSTDSTRET ASSESSMENT	PROPOSHDWATR strMce ASSESSMENT		PROPOSEDSEWER SRMGEASSESSMENT		TOTALPROPOSED ASSESSMENT
2411722130143	321 7TH AVENUE NORTH	KAYLA N SAUVE	321 7TH AVE N	HOPKINS MN 55343		\$	10,262.68	1,675.00	\$	1,600.0	\$	13,537.68
2411722130119	322 7TH AVENUE NORTH	MARK \& TIPHANIE DIRNBERGER	322 7TH AVE N	HOPKINS MN 55343		\$	2,640.57	1,675.00	\$	1,600.00	\$	5,915.57
2411722130118	326 7TH AVENUE NORTH	LINDA A ELIE	326 7TH AVE N	HOPKINS MN 55343		\$	2,852.85	1,675.00	\$	1,600.00	\$	6,127.85
2411722130064	201 8TH AVENUE NORTH	ELLEN VONDENKAMP	201 8TH AVE N	HOPKINS MN 55343		\$	5,307.00	1,675.00	\$	1,600.00	\$	8,582.00
2411722130065	205 8TH AVENUE NORTH	HEIDI A HANSCHU	205 8TH AVE N	HOPKINS MN 55343		\$	5,307.00	1,675.00	\$	1,600.00	\$	8,582.00
2411722130066	209 8TH AVENUE NORTH	HEATHER BUESSELER	209 8TH AVE N	HOPKINS MN 55343		\$	5,307.00	1,675.00	\$	1,600.00	\$	8,582.00
2411722130084	210 8TH AVENUE NORTH	JUSTIN P DOYLE	CLAIRE C DOYLE	2108 TH AVE N	HOPKINS MN 55343	\$	2,027.12	1,675.00	\$	1,600.00	\$	5,302.12
2411722130067	2138TH AVENUE NORTH	TIMOTHY SNYDER	JOY SNYDER	2138 TH AVE N	HOPKINS MN 55343	\$	7,960.50	1,675.00	\$	1,600.00		11,235.50
2411722130083	2148TH AVENUE NORTH	BARBARA J WEAVER	214 8TH AVE N	HOPKINS MN 55343		\$	2,027.12	1,675.00	\$	1,600.00	\$	5,302.12
2411722130082	218 8TH AVENUE NORTH	ALLISON WACHUTKA	218 8TH AVE N	HOPKINS MN 55343		\$	2,027.12	1,675.00	\$	1,600.00	\$	5,302.12
2411722130068	2218 TH AVENUE NORTH	CURTIS D \& KRISTA J DEDERICH	221 8TH AVEN	HOPKINS MN 55343		\$	7,960.50	1,675.00	\$	1,600.00	\$	11,235.50
2411722130081	222 8TH AVENUE NORTH	JOSEPH R/DIANNA L DIPALERMO	222 8TH AVE N	HOPKINS MN 55343		\$	2,027.12	1,675.00	\$	1,600.00	\$	5,302.12
2411722130069	225 8TH AVENUE NORTH	KEVIN NEWBERGER	CARLY MYRDAL	225 8TH AVE N	HOPKINS MN 55343		5,307.00	1,675.00	\$	1,600.00	\$	8,582.00
2411722130080	226 8TH AVENUE NORTH	S\&LMCSPADDEN	2268 TH AVE	HOPKINS MN 55343		\$	2,027.12	1,675.00	\$	1,600.00	\$	5,302.12
2411722130070	229 8TH AVENUE NORTH	LAURA A MESTLER	229 8TH AVE N	HOPKINS MN 55343		\$	5,307.00	1,675.00	\$	1,600.00		8,582.00
2411722130079	230 8TH AVENUE NORTH	JEFFREY L URBAN	SUSAN W URBAN	230 8TH AVE N	HOPKINS MN 55343	\$	2,027.12	1,675.00	\$	1,600.00	\$	5,302.12
2411722130071	233 8TH AVENUE NORTH	ERIK R HENRICKSEN	2338 TH AVE N	HOPKINS MN 55343		\$	5,307.00	1,675.00	\$	1,600.00	\$	8,582.00
2411722130078	2348 8TH AVENUE NORTH	BRANDON HAYES/JOURDAN HAYES	2348 TH AVE N	HOPKINS MN 55343		\$	2,027.12	1,675.00	\$	1,600.00		5,302.12
2411722130072	237 8TH AVENUE NORTH	GLENN M PRIEST	237 8TH AVEN	HOPKINS MN 55343		\$	5,307.00	1,675.00	\$	1,600.00		8,582.00
2411722130077	2388 8TH AVENUE NORTH	STEREME LLC	2601 CASCO PT RD	WAYZATAMN 55391		\$	2,027.12	1,675.00	\$	1,600.00		5,302.12
2411722130076	242 8TH AVENUE NORTH	TERRY P \& LORRIL EISWALD	242 8TH AVE N	HOPKINS MN 55343		\$	1,496.42	1,675.00	\$	1,600.00	\$	4,771.42
2411722130073	243 8TH AVENUE NORTH	HIEN M LU \& VAN THUY VUONG	243 8TH AVE N	HOPKINS MN 55343		\$	4,776.30	1,675.00	\$	1,600.00	\$	8,051.30
2411722130074	245 8TH AVENUE NORTH	DAVID B LENTZ	245 8TH AVE N	HOPKINS MN 55343		\$	4,670.16	1,675.00	\$	1,600.00		7,945.16
2411722130075	2468 8TH AVENUE NORTH	MOLLY LONG \& DAVID LOVETT	2468 8TH AVE N	HOPKINS MN 55343		\$	1,390.28	1,675.00	\$	1,600.00	\$	4,665.28
2411722130108	3008 8TH AVENUE NORTH	MARY B LAUER	300 8TH AVE N	HOPKINS MN 55343		\$		1,675.00	\$	1,600.00		3,275.00
2411722130125	301 8TH AVENUE NORTH	PAMELA J KOLLODGE	BLAIR CROCKETT	3018 TH AVE N	HOPKINS MN 55343	\$	2,109.87	1,675.00	\$	1,600.00		5,384.87
2411722130126	3058 8TH AVENUE NORTH	ELIZABETH S CLEARY	3058 TH AVE N	HOPKINS MN 55343		\$	2,109.87	1,675.00	\$	1,600.00	\$	5,384.87
2411722130107	306 8TH AVENUE NORTH	MARY ELLEN GABRIELE	7710 CORCORAN TRL W	CORCORAN MN 55340		\$		1,675.00	\$	1,600.00	\$	3,275.00
2411722130127	309 8TH AVENUE NORTH	JOSH REDIGER	LARRY S REDIGER	309 8TH AVE N	HOPKINS MN 55343	\$	1,579.17	1,675.00	\$	1,600.00	\$	4,854.17
2411722130106	310 8TH AVENUE NORTH	RONALD J HELGESON	3108 TH AVE N	HOPKINS MN 55343		\$		1,675.00	\$	1,600.00		3,275.00
2411722130105	314 8TH AVENUE NORTH	JOSHUA DEAN ZUZEK	ELIZABETH RUTH ZUZEK	3148 TH AVE N	HOPKINS MN 55343	\$		1,675.00	\$	1,600.00	\$	3,275.00
2411722130128	315 8TH AVENUE NORTH	MICHAEL S CRANE	SARAH L REEH-CRANE	315 8TH AVE N	HOPKINS MN 55343	\$	2,640.57	1,675.00	\$	1,600.00	\$	5,915.57
2411722130129	317 8TH AVENUE NORTH	CHARLES M PLUNKETT	DEBRA P PLUNKETT	317 8TH AVE N	HOPKINS MN 55343	\$	2,109.87	1,675.00	\$	1,600.00	\$	5,384.87
2411722130104	3188TH AVENUE NORTH	BRIAN JJACQUELINE LO HUNKE	318 8TH AVE N	HOPKINS MN 55343		\$		1,675.00	\$	1,600.00	\$	3,275.00
2411722130130	321 8TH AVENUE NORTH	HEIDI J HEMMEN	321 8TH AVE N	HOPKINS MN 55343		S	2,109.87	1,675.00	\$	1,600.00	\$	5,384.87
2411722130103	324 8TH AVENUE NORTH	JAMES JAECKELS	NANCY JAECKELS	324 8TH AVEN	HOPKINS MN 55343	\$	4,776.30	1,675.00	\$	1,600.00	\$	8,051.30
2411722130131	325 8TH AVENUE NORTH	AMY	LKT PROPERTIES LLC	40512 TH AVEN	HOPKINS MN 55343	\$	2,109.87	1,675.00	\$	1,600.00	\$	5,384.87
2411722130132	329 8TH AVENUE NORTH	TODD KING \& COLLEEN KING	6045 BRAND CIR	EXCELSIOR MN 55331		\$	2,109.87	1,675.00	\$	1,600.00	\$	5,384.87
2411722130102	3308 8TH AVENUE NORTH	JANELA \& THEODORE EHRLICH	3308 TH AVE N	HOPKINS MN 55343		\$		1,675.00	\$	1,600.00	\$	3,275.00
2411722130133	3338 8TH AVENUE NORTH	MICHAEL J MOULTON	333 8TH AVE N	HOPKINS MN 55343		\$	4,444.95	1,675.00	\$	1,600.00	\$	7,719.95
2411722130101	334 8TH AVENUE NORTH	CYPRIAN R TROYER	334 8TH AVE N	HOPKINS MN 55343		\$	- -	1,675.00	\$	1,600.00	\$	3,275.00
2411722130100	338 8TH AVENUE NORTH	JEAN HAMMOND	3388 8TH AVE N	HOPKINS MN 55343		\$	- -	\$ 1,675.00	\$	1,600.00	\$	3,275.00
								PRELIMINARY TOTAL AMOUNT TO BE ASSESSED ${ }^{\text {S }}$ \$ 953,7218				

Appendix D: Resident Questionnaires \& Neighborhood Meetings

City of Hopkins

Public Works-Engineering Division
 2024 Central Avenues Improvements Questionnaire

Please email to Nick Amatuccio: nickam@ bolton-menk.com By: August 18, 2023 Questionnaires can also be Mailed to Nick at 12224 Nicollet Ave, Burnsville, MN 55337

Street and utility improvements are proposed in your neighborhood for 2024. This questionnaire is a valuable resource for the City in identifying issues to receive attention. Your comments are greatly appreciated.

1. DRAINAGE

Have you observed standing water in the street or your front yard after a significant rain? If so, where is it located?
2. SANITARY SEWER, please indicate 'yes' with an X as applicable:
\qquad We have NOT experienced problems with our sanitary sewer service.
\qquad We have experienced problems or replaced our sewer service. Please describe:
3. WATERMAIN, please indicate 'yes' with an X as applicable:
___ We have NOT experienced problems with our water service.
\qquad We have experienced problems or replaced our water service. Please describe:

4. PEDESTRIAN SAFETY \& FACILITIES

Are there any areas of concern with respect to pedestrian safety? If so, where?

5. IRRIGATION SYSTEM / INVISIBLE FENCE, please indicate 'yes' with an X as applicable:
 \qquad Yes, we have an irrigation system.
 \qquad Yes, we have an invisible pet fence.
 6. TREES / LANDSCAPING
 Do you have concerns about the condition of trees or potential impacts to landscaping in your front yard? If so, describe.

7. GENERAL COMMENTS / QUESTIONS

Please describe any issues you suggest be considered as part of this project:

The following information is optional but is useful if we have a question about your responses:
Name: \qquad Phone \#: \qquad
Address: \qquad Email:
THANK YOU FOR YOUR RESPONSE!
Should you have any questions please contact Eric Klingbeil, City Engineer, at 952-548-6357 or eklingbeil@hopkinsmn.com or Nick Amatuccio at 612-965-3926 or nickam@bolton-menk.com

BOLTON
\& MENK Hopkins, MN

City of Hopkins 2024 Central Avenues Improvements
 50 Neighborhood Meeting 1

Phone and/ or Email

Name	Address	Phone and/ or Email
Tresca Allsman	237 6th Ave N	612-850-9405 / tresca_allsman@ yahoo.com
M ark E. Dobbins	114 7th Ave N	952-807-7766 / dobbinsme@ comcast.net
Sue Johnson	117 7th Ave N	952-935-4028 / tsjohnson7@earthlink.net
Dale \& J ean Searle	387 th Ave N	952-412-4727 / burmugo@comcast.net
Curt \& Krista Dederich	221 8th Ave N	952-927-0686/ goodnightkourt@earthlink.net
Andrew Fischer	337 th Ave N	612-743-2253 / andrew@ apastron.co
Brandon Wills	1417 7th Ave N	815-297-7816
Gayle Seaberg	313 7th Ave N	612-386-3581 / icteeth@ comcast.net
David Lentz (Zoom Online)		
M aureen Davis (Zoom Online)		
Scott M cSpadden (Zoom Online)		
Mike Essen (Zoom Online)		
Jacques Youakim (Zoom Online)		
Susan Clark (Zoom Online)		

Neighborhood M eeting \#1 2024 Central Avenues Improvements

City of Hopkins
September 13, 2023

Project Development Process

Pavement Management Ratings \& Utility Conditions

Pavement Condition Map 2022

3

Resident Questionnaire Summary

42 Questionnaires Received (25\% of the Neighborhood)

Most Common Responses:

- Uneven sidewalks with standing water and ice build up in the winter
- Existing sidewalks to be replaced on $7^{\text {th }}$ Ave N and $8^{\text {th }}$ Ave N with adequate grade for drainage and safety
- Drainage issues in the street and curb throughout the neighborhood
- New curb and gutter and additional storm sewer catch basins as needed to improve drainage
- Sidewalk requested on 3rd St N
- Project team will be reaching out to and coordinating with 3 rd $\operatorname{St} N$ residents to gauge level of interest in adding a sidewalk
- 4-way stop signs requested at $7^{\text {th }}$ Ave $\mathrm{N} / 1^{\text {st }} \mathrm{St} \mathrm{N}$ and other intersectionsthroughout the neighborhood
- Traffic analysis completed at $7^{\text {th }}$ Ave $/ 1^{\text {st }}$ St N intersection and 4 -way stop signs are not warranted due to low traffic volumes
- Pedestrian analysis also completed and no additional pedestrian crossing features are needed
- Some overgrown and unhealthy trees throughout the neighborhood
- Trees within the boulevard and City right-of-way have been and will continue to be evaluated by the project team and the City Forester to determine trees that need to be removed as part of the project
- Protect healthy trees throughout the neighborhood

5

Street Improvements

Existing \& Proposed StreetWidths		
Street Segment	Existing Width	Proposed Width
$8^{\text {th }}$ Ave N, $2^{\text {nd }}$ St N to M tka M ills Rd	31'	28'
$7{ }^{\text {th }}$ Ave N, HCRRA Alley to $1^{\text {st }}$ St N	$35.4{ }^{\prime}$	35'
$7{ }^{\text {th }}$ Ave $\mathrm{N}, 11^{\text {st }}$ St N to M tka M ills Rd	35' - 36^{\prime}	32'
$3^{\text {rd }}$ St $\mathrm{N}, 5^{\text {th }}$ Ave N to $8^{\text {th }}$ Ave N	29.5'	28'
$6^{\text {th }}$ Ave N, M ainstreet to $1^{\text {st }}$ St N	Reclaim \& Resurface	
$1^{\text {st }}$ St $\mathrm{N}, 5^{\text {th }}$ Ave N to $8^{\text {th }}$ Ave N	M ill \& Overlay	
$2^{\text {nd }} \mathrm{St} \mathrm{N}, 5^{\text {th }}$ Ave N to $8^{\text {th }}$ Ave N	M ill \& Overlay	

Drainage Improvements - Storm Sewer

5

Legend
Project Area
Drainage Issues
\& Improvements

7

Utility Improvements - Sanitary Sewer

Utility Improvements - Watermain

9

Service Line Replacement

Boulevard Trees

Trees may be removed for one of the following reasons:

- Susceptible to disease or invasive species - Ash trees
- Poor condition-Dead, dying, leaning, etc.
- Conflict with utilities (Sewer and Water lines)
- Conflict with road construction or grading

Trees that are removed will be replaced with a tree at the end of the project

Special Assessment Policies

-Assessments are proposed for all reconstructed streets (7th Ave N, $8^{\text {th }}$ Ave N , and $3^{\text {rd }}$ St N)

- No assessmentsfor pavement resurfacing/maintenance work (6 ${ }^{\text {th }}$ Ave $\mathrm{N}, 1^{\text {st }}$ St $\mathrm{N}, 2^{\text {nd }}$ St N)
-Streets (Street Assessment)
-70\% of the total street improvement cost
-Varies for each property based on front footage
- Front foot rate subject to cap
-Streets with no adjacent property addresses (3rd St N) will be distributed one block north and south
-Utility M ains
-No Assessments
-Utility Services (Utility Assessment)
-50\% of as-bid, actual service costs for residential properties
-100\% of as-bid, actual service costs for commercial properties
-Total Assessment = Utility Assessment + Street Assessment

Special Assessment Caps

-2024 Front Foot Rate Cap (Single Family Residential Properties)

- $\$ 106.14$ / front foot
-Front Footage Cap (Single Family Residential Properties)
- Front footage counted up to $\mathbf{1 2 5}$ feet
-Caps do not apply to commercial properties
- Benefit Appraisals for these properties - Iower amount used (appraisal vs. policy)
-Preliminary Assessment amounts will be mailed to each property receiving an assessment within the next month
- Prior to Neighborhood M eeting \#2 and the Public Improvement Hearing (City Council M eeting)

13

Project Schedule (2023)

September 13-Neighborhood M eeting 1

- Review Existing Conditions, present proposed improvements, collect input

October 3-City Council M eeting

- Present Feasibility Report and Council calls for the public hearing

October 25 - Neighborhood M eeting 2

- Review of proposed improvements, review preliminary assessments, collect input

November 6 - City Council Meeting

- Council conducts public hearing on improvements and considers ordering final plans

Project Schedule (2024)

January 16-City Council Meeting

- Approve final plans and authorize bidding

February 9 - Open Bids
February 20 - City Council Meeting

- Council orders public hearing on assessments

Early M arch (Date TBD) - Neighborhood Meeting 3

- Review final assessments and plans, discuss construction process, collect input

March 19 - City Council Meeting

- Conduct public hearing on assessments and consider adoptingassessments
- Award contract

May to October - Construction

- Construction could possibly start in April if weather conditions allow
- Final punch list and cleanup items may go into November and Spring of 2025

Project Communication

Bolton \& M enk Project Website www.Hopkins-2024.com

Sign up for project updates
Sign up for project updates
To sion up oror roject updatas, please enter your contact intomaton below svoserpepoon Tyee Emal

Submit Cancel
\qquad Subscrnboon ypee SMSTert Messige wrotess Number -

Project Contacts

Nick Amatuccio, P.E. - Project M anager

- nickam@bolton-menk.com; 612-965-3926

Eric Klingbeil, P.E. - City Engineer

- eklingbeil@ hopkinsmn.com; 952-548-6357

Thank You! Any Questions?

Nick Amatuccio, PE
Project M anager

Eric Klingbeil, PE City Engineer

Real People. Real Solutions.
Bolton-M enk.com

Appendix E: Geotechnical Evaluation

Geotechnical Evaluation Report

City of Hopkins 2024 Street and Utility Improvements Project Hopkins, Minnesota

Prepared for

Bolton \& Menk, Inc.

Professional Certification:

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly licensed Professional Engineer under the laws of the State of Minnesota.

Nick Amatuccio, PE
Bolton \& Menk, Inc.
12224 Nicollet Avenue
Burnsville, MN 55337
Re: Proposal for a Geotechnical Evaluation
City of Hopkins 2024 Street and Utility Improvements Project
Hopkins, Minnesota

Dear Mr. Amatuccio:

We are pleased to present this Geotechnical Evaluation for the proposed City of Hopkins 2024 Street and Utility Improvements Project in Hopkins, Minnesota.

Thank you for making Braun Intertec your geotechnical consultant for this project. If you have questions about this report, or if there are other services that we can provide in support of our work to date, please contact Brian Schreurs at 320.241.9965 (bschreurs@braunintertec.com); or Neil Lund at 612.369.3163 (NLund@braunintertec.com).

Sincerely,

BRAUN INTERTEC CORPORATION

Brian J. Schreurs, PE
Account Manager, Senior Engineer

Neil G. Lund, PE
Technical Manager, Senior Engineer

Table of Contents

Description Page
A. Introduction 1
A.1. Project Description 1
A.2. Project Area Conditions 2
A.2.a. Zoning and Site Grades 2
A.2.b. Pavement Surface Conditions (Rehabilitation Area) 3
A.3. Purpose 6
A.4. Background Information and Reference Documents 7
A.5. Scope of Services 7
B. Results 8
B.1. Geologic Overview 8
B.2. Boring Results 8
B.3. Groundwater 9
B.4. Core and Hand Auger Boring Results 9
B.5. Laboratory Test Results 10
C. Recommendations 11
C.1. Design and Construction Discussion 11
C.1.a. Pavement Reuse - Reconstruction Project 11
C.1.b. Soil Reuse 11
C.1.a. Utilities 12
C.1.b. Rehabilitation Area 12
C.2. Utility Replacement 13
C.2.a. Excavation Oversizing 13
C.2.b. Utility Subgrade Stabilization 14
C.2.c. Excavated Slopes 14
C.2.d. Selection, Placement and Compaction of Backfill 14
C.2.e. Corrosion Potential 16
C.3. New Pavements. 16
C.3.a. Pavement Subgrade Preparation 16
C.3.b. Pavement Subgrade Test Roll 16
C.3.c. Engineered Fill Materials and Compaction 17
C.3.d. Pavement Design Sections, Full Depth Reconstruction 17
C.3.e. Pavement Materials Placement 18
C.4. Pavement Rehabilitation Areas 18
D. Procedures 19
D.1. Penetration Test Borings 19
D.2. Pavement Cores and Hand Auger Borings 19
D.3. Exploration Logs 19
D.3.a. Log of Boring Sheets 19
D.3.b. Geologic Origins 20
D.4. Material Classification and Testing 20
D.4.a. Visual and Manual Classification 20
D.4.b. Laboratory Testing 20
D.5. Groundwater Measurements 20
E. Qualifications 21
E.1. Variations in Subsurface Conditions 21

Table of Contents (continued)

Description Page

E.1.a. Material Strata 21
E.1.b. Groundwater Levels 21
E.2. Continuity of Professional Responsibility 21
E.2.a. Plan Review 21
E.2.b. Construction Observations and Testing 22
E.3. Use of Report 22
E.4. Standard of Care 22

Appendix

Soil Boring and Pavement Core Location Sketch
Log of Boring Sheets ST-1 through ST-8
Log of Hand Auger Boring Sheets C-1 through C-6
Descriptive Terminology of Soil
Pavement Core Photos

A. Introduction

A.1. Project Description

This Geotechnical Evaluation Report addresses the proposed 2024 Street and Utility Improvements Project in Hopkins, Minnesota. Proposed work on the project will include utility replacements and street reconstruction or rehabilitation. Figure 1 shows reconstruction (solid red) and rehabilitation areas (dashed red).

Figure 1. Streets Proposed for Reconstruction and Rehabilitation in 2024

Figure 1 provided by Bolton \& Menk, Inc. dated April 10, 2023

Bolton \& Menk, Inc.
Project B2303974
September 15, 2023
Page 2

Table 1. Project Description - 2024 Street and Utility Improvements Project

Project Component	Description	Source
Pavement type(s)	Bituminous	Assumed based on in-place pavements/City of Hopkins standards
	Residential streets in reconstruction area: 100,000 ESALs	Assumed - traffic data not available
Pavement loads	Rehabilitation area streets: 200,000 ESALs	MnDOT data for 1st Street N (11th Ave N to 8th Ave N) and State Aid ESAL Calculator. Assumed the most recent 2016 count for design with a growth rate of 0.5 percent due to declining historical AADT.
Grade changes	Streets < 1 foot	Assumed
Utilities	Storm sewer, water main and sanitary sewer replacement Maximum utility depth of approximately 15 feet	Bolton \& Menk, Inc. (BMI)

We have described our understanding of the proposed construction and site to the extent others reported it to us. Depending on the extent of available information, we may have made assumptions based on our experience with similar projects. If we have not correctly recorded or interpreted the project details, the project team should notify us. New or changed information could require additional evaluation, analyses and/or recommendations.

A.2. Project Area Conditions

A.2.a. Zoning and Site Grades

The in-place streets are bituminous-surfaced with urban sections that include concrete curb and gutter.

The project area shown in Figure 1 above is largely zoned as high-density residential with some businesses mixed in in the southern portion of the project area.

Street grades in the reconstruction area generally increase from south to north at 7th Avenue North, 8th Avenue North and 3rd Street North, with existing ground surface elevations at the boring locations range from 918.7 (ST-6) to 933.1 (ST-3) feet.

Street grades in the rehabilitation area are generally flat along 1st Street North, increase from west to east along 2nd Street North, increase from east to west along 3rd Street North, and increase from south to north along 6th Avenue North. Existing ground surface elevations at the pavement core locations range from 920.6 (C-6) to 929.2 (C-3).

A.2.b. Pavement Surface Conditions (Rehabilitation Area)

In the rehabilitation area shown in Figure 1, pavement surface condition varied from very poor to good. Major distresses included patches, linear cracks, block cracks, edge cracks and fatigue cracks. Table 2 includes a summary of distresses for each block in this area with a qualitative judgement of overall surface condition based on the following general criteria:

- Excellent: Newer pavements with little to no cracking, all of which is non-structural (e.g. only linear thermal cracking). Maintenance requirements include crack seal or a sealcoat.
- Good: relatively new pavements with (typically sealed) linear cracks and isolated structural issues (fatigue cracking, potholes, edge cracking) of low severity. May require isolated patching and somewhat frequent crack sealing.
- Fair: Widespread linear cracking beginning to develop secondary cracks due to lack of maintenance. Structural cracking is somewhat common, occasionally severe, and has previously required patches for repair. The bituminous materials are still mostly intact, and pavements can be repaired by mill and overlay.
- Poor: Frequent maintenance of structural issues is needed. Edges and curblines may be failing and breaking up; most linear cracks are too wide to be sealed. Frequent patches are usually present and there is a loss of bituminous material integrity. Pavements in poor condition can typically be repaired with reclamation or reconstruction.
- Very Poor: Pavements with significant areas of failure, including widespread structural cracking, potholes, and general breakup of the pavement that is too extensive for small-scale patching. Generally requires reconstruction, possibly with significant subgrade soil correction.

Bolton \& Menk, Inc.
Project B2303974
September 15, 2023
Page 4

Table 2. Pavement Surface Condition Summary

Segment	Condition	Distress Summary	Representative Photo
1st St N - 8th Ave S to 7th Ave S	Good	Transverse cracking, longitudinal cracking	
1st St N -7 th Ave S to 6th Ave S	Poor	Longitudinal cracking, transverse cracking, potholes, patches	
1st St N-6th Ave S to 5th Ave S	Fair	Linear/block cracking, weathering	

Bolton \& Menk, Inc.
Project B2303974
September 15, 2023
Page 5

Segment	Condition	Distress Summary	Representative Photo
2nd St N - 8th Ave S to 7th Ave S	Good	Transverse cracks, weathering	
2nd St N - 7th Ave S to 6th Ave S	Good	Transverse cracks, longitudinal cracks	
2nd St N 6th Ave S to 5th Ave S	Good	Transverse cracks, longitudinal cracks	

Segment	Condition	Distress Summary	Representative Photo
3rd St N - 6th Ave N to 5th Ave N	Poor	Patches, edge cracking, fatigue cracking, frost heave damage, potholes	
6th Ave S - Mainstreet to 1st St N	Very poor	Raveling, potholes, fatigue cracking, patching, longitudinal and transverse cracking	

A.3. Purpose

The purpose of our geotechnical evaluation was to characterize subsurface geologic conditions at selected exploration locations, evaluate their impact on the project, and provide geotechnical recommendations for the design and construction of the 2024 Street and Utility Improvements Project in the City of Hopkins, Minnesota.

A.4. Background Information and Reference Documents

We reviewed the following information:

- Communications with BMI regarding the proposed street and utility rehabilitation.
- Aerial imagery of the site provided by BMI and available on Google Earth.
- Geologic map C-45, Part A, Geologic Atlas of Hennepin County, Minnesota prepared by the Minnesota Geological Survey, dated 2018.

A.5. Scope of Services

We performed our scope of services for the project in accordance with our Proposal for a Geotechnical Evaluation to BMI, dated April 21, 2023. The following list describes the geotechnical tasks completed in accordance with our authorized scope of services.

- Reviewing the background information and reference documents previously cited.
- Staking and coordinating the clearing of the exploration location of underground utilities. We acquired the surface elevations and locations with GPS technology using the State of Minnesota's permanent GPS base station network. The Soil Boring and Pavement Core Location Sketch included in the Appendix shows the approximate locations of the borings and pavement cores.
- Performing eight standard penetration test (SPT) borings, denoted as ST-1 to ST-8, to nominal depths of $141 / 2$ to 20 feet below the existing ground surface.
- Backfilling or sealing borings in accordance with Minnesota Department of Health (MDH) requirements.
- Coring and performing hand auger borings for six locations along 1st Street $\mathrm{N}, 2$ nd Street N , 3rd Street N , and 6th Avenue S to provide recommendations on the feasibility of mill and overlay, reclamation, or an alternative rehabilitation strategy.
- Performing laboratory testing on select samples to aid in soil classification and engineering analysis.
- Preparing this report containing a boring and pavement core location sketch, logs of soil borings, a summary of the soils encountered, pavement core results (including photos), results of laboratory tests, and recommendations for material selection, subgrade preparation, and pavement and utility designs.

B. Results

B.1. Geologic Overview

Based on the review of geologic information and our experience in the area, soils will mostly consist of existing fill overlying native soils consisting of sand and gravel (glacial outwash).

We based the geologic origins used in this report on the soil types and laboratory testing, and available common knowledge of the geological history of the site. Because of the complex depositional history, geologic origins can be difficult to ascertain. We did not perform a detailed investigation of the geologic history for the site.

B.2. Boring Results

The table below provides a summary of the pavement section we encountered in each boring performed. We did not perform gradation analysis on the apparent aggregate base material encountered as part of the pavement section and cannot conclusively determine if the encountered material satisfies a particular specification. The pavement section thicknesses provided below are the field measured thicknesses and should be considered approximate.

Table 3. Pavement Section Thickness

Boring	Street	Pavement Section (in)	Aggregate Base Section (in)
ST-1	8th Avenue N	$31 / 2$	4
ST-2		$21 / 2$	6
ST-3	7th Avenue N	3	3
ST-4		3	4
ST-5		$41 / 2$	6
ST-6		4	5
ST-7		5	4
ST-8	3rd Street N	$41 / 2$	$21 / 2$

The table below provides a summary of the soil boring results, in the general order we encountered the strata. Please refer to the Log of Boring sheets in the Appendix for additional details. The Descriptive Terminology sheet in Appendix A includes definitions of the abbreviations used in the table below. For simplicity in this report, we define fill to mean existing, uncontrolled or undocumented fill.

Table 4. Subsurface Profile Summary

Strata	Soil Type ASTM Classification	Range of N -Values	Commentary and Details
Pavement section	---	---	- See Table 3 above and the Log of Boring Sheets in the Appendix. - Drillers noted a petroleum like odor in the apparent aggregate base material indicating this may be treated aggregate base.
Fill	$\begin{gathered} \text { SP-SM, SM, } \\ \text { SC, CL } \end{gathered}$	4 to 33	- Encountered in the borings (except Borings ST-3, ST-4, and ST-7) beneath the pavement materials. - Encountered to depths ranging from 4 to 8 feet below the existing ground surface. - Fill layers encountered in Borings ST-2 and ST-6 were noted as slightly organic. - Generally moist.
Glacial deposits	SP, SP-SM (outwash) SM (till)	4 to 41	- Encountered to the termination depth of each boring beneath the fill and the pavement materials in Borings ST-3, ST-4, and ST-7. - In general, average N -values recorded in the borings indicate the sands had a loose to medium dense relative density. - Variable amounts of gravel; may contain cobbles and boulders. - Moisture condition generally moist.

B.3. Groundwater

We did not observe groundwater while advancing our borings. It appears based on this and the apparent and tested moisture contents that groundwater is below the depths explored. Project planning should anticipate seasonal and annual fluctuations of groundwater.

B.4. Core and Hand Auger Boring Results

The table below summarizes the pavement cores and hand auger borings performed in the rehabilitation areas shown in Figure 1. A photo log of the cores can be found in the report Appendix.

Table 5. Core and Hand Auger Boring Results

Core Location	Thickness (in)		Base Description	Core Condition	Subgrade Soil Description	Notes
	HMA	Aggregate Base				
C-1	$23 / 4$	3	Recycled bit	Low-severity stripping	5 3/4 to 36 inches: SPSM, f-c grained, with gravel, dark brown and brown, moist	
C-2	$41 / 2$	$81 / 2$	Crushed limestone	Good condition	13 to 18 inches: SM, f-c grained, with gravel, dark brown, moist 18 to 36 inches: Sandy CL, brown, moist	
C-3	$41 / 2$	12	Recycled bit	Good condition	16 1/2 to 18 inches: SC, w/gravel, dark brown, moist 18 to 26 inches: SM, f-m grained, w/gravel, dark brown, moist	Refusal at 26 inches
C-4	$51 / 2$	$41 / 2$	Recycled bit	Good condition	10-17 inches: SP-SM, f-m grained, w/gravel, brown, moist 17-36 inches: Sandy CL, tr gravel, brown, moist	
C-5	9	--	--	Good condition	9 to 36 inches: SP-SM, fm grained, w/gravel, brn, moist	No apparent aggregate base; subgrade similar to sand/gravel base
C-6	5	19	Crushed limestone	Debonded at 2 inches deep; stripping around bond area	24 to 36 inches: SM, f-m grained, w/gravel, dark brown, moist	

B.5. Laboratory Test Results

We performed moisture content (MC) tests (per ASTM D2216) on selected samples to aid in our classifications and estimations of the materials' engineering properties. The Log of Boring Sheets attached in the Appendix present the results of the MC tests in the "MC" column.

We also performed wash loss (P200) tests (per ASTM D1140) and organic content (OC) tests (per ASTM D2974) on selected samples to determine the reusability of the material. The Log of Boring sheets in the Appendix show the results of the OC test in the "Tests or Remarks" column.

C. Recommendations

C.1. Design and Construction Discussion

C.1.a. Pavement Reuse - Reconstruction Project

If the pavements are to be reused or reclaimed, our pavement thickness measurements suggest a 7 to 8 inch full-depth reclamation (FDR) depth can be used for materials in the reconstruction area. Variation of existing pavement depth should be anticipated.

We recommend implementing thorough quality control practices, including frequent sieve analyses, to achieve a desirable gradation of the reclaimed material. We also suggest that the contractor assume some contingency for importing clean, crushed rock that can be blended with the reclaimed material to improve the uniformity of the resulting gradation prior to reuse as an aggregate base.

C.1.b. Soil Reuse

Based on the soil boring results, we anticipate the subgrade soils will generally consist of poorly graded sand, poorly graded sand with silt, silty sand, clayey sand, with less frequent clayey soils. It appears these soils can generally be reused based on composition and apparent moisture and organic contents. We provide comment on soil reuse in Table 6.

Table 6. Soil Reuse Considerations

Boring	Street	Soil Depth (ft)	Soil Type	Comment
ST-2	8th Avenue N	0.7 to 4	CL	Slightly organic fill; suitable for reuse with the recommended compaction and conditioning
ST-6		0.8 to 4	SC	Slightly organic fill; suitable for reuse with the recommended compaction and conditioning
ST-7	7th Avenue N	0 to 0.8	Agg Base	Drillers noted petroleum like odor in apparent aggregate base material

As noted above, there is a potential that bituminous treated base (BTB) material may be encountered during excavation beneath the pavement surface. BTB is characterized as base material intermixed with pieces of asphalt and a related petroleum-type odor. If BTB is encountered beneath the pavement surface, the excavation should be evaluated and monitored by an environmental consultant. Excavated bituminous soils and/or associated granular materials treated with bituminous may likely be recycled and reused on the project as aggregate base immediately under the pavement surface in accordance with the standing Beneficial Use Determination (BUD) established by the MPCA Solid Waste Division.

We recommend tapering zones of clayey soils adjacent to more granular material to avoid abrupt transitions that may result in differential movements at the surface. We do not recommend further mixing of clayey soils with granular soils during construction, and to the extent possible, soil types should be separated for reuse during excavation.

Although we did not note cobbles and boulders in our borings, glacial deposits may contain them. The presence of cobbles and boulders may slow excavation and limit the quantity of soil that can be reused efficiently in utility trenches.

C.1.a. Utilities

The reuse of the utility trench backfill soils will have potential impacts on the pavement subgrades. If the backfill is not properly compacted, there is the potential for subgrade instability and settlement, with premature deterioration of the pavement surface. On this project, we anticipate that most of the trench soils will consist of relatively granular soils that can be readily recompacted provided they are conditioned to the recommended moisture content. Table 6 above provides comment on possible zones of soft or unstable backfill that may require additional work or removal and replacement.

Care should be used to avoid disturbance of the soils supporting utilities or impacting the utilities themselves during pavement removals and reconstruction.

C.1.b. Rehabilitation Area

In our opinion, the surface condition and/or pavement material conditions of the following segments will not be suitable for a partial-depth mill and overlay, and instead will require either full-depth mill and overlay or FDR:

- 3rd Street N
- 6th Avenue N, from 1st Street N to Main Street

The remaining segments (2 nd Street $\mathrm{N}, 1$ st Street N) appeared to be in better condition at the surface, and we believe a partial depth mill and overlay will be a viable approach to rehabilitation. Some patching may be required from 7th Street N to 6th Street N on 1st Street N .

Preservation of these segments via partial depth mill and overlay will result in a service life of 10 to 12 years before similar rehabilitation is required. Additional work, such as repairing damaged curb edges or patching large distresses, could help prolong the service life.

Full-depth mill and overlay is also an option to preserve pavements where the bituminous thickness is small, typically about 4 inches or less. Testing rolling and recompaction of the aggregate base prior to repaving will help provide a service life of close to 20 years for this option.

We also expect FDR to have a 20 -year service life. Reclamation can proceed at the surface to a depth of about 8 inches (3 rd Street N) to 12 or more inches (1st Street $\mathrm{N}, 6$ th Avenue S), after which the reclaim can be removed to accommodate new bituminous pavements. This depth will vary and can be extended if suggested by potholing during construction.

The following table summarizes the above discussion.

Table 7. Repair Recommendations Summary

Segment	Start	End	Repair
1st St N	8th Ave S	5th Ave S	Partial-depth mill and overlay; additional patching possible from 7th Ave S to 6th Ave S
2nd St N	8th Ave S	7th Ave S	Partial-depth mill and overlay
2nd St N	7th Ave S	6th Ave S	Partial-depth mill and overlay
2nd St N	6th Ave S	5th Ave S	Partial-depth mill and overlay
3rd St N	8th Ave N	5th Ave N	Reconstruction (FDR followed by subgrade removal)
6th Ave S	Mainstreet	1st St N	Full-depth reclamation

C.2. Utility Replacement

C.2.a. Excavation Oversizing

When removing unsuitable materials below utilities, we recommend the excavation extend outward and downward at a slope of $1: 1 \mathrm{~V}: \mathrm{H}$ or flatter.

Care during excavation should be used to avoid disturbance of unsuitable soils in the side walls of the excavation.

C.2.b. Utility Subgrade Stabilization

We anticipate the soils at typical invert elevations for utilities will generally be suitable for utility support after the recommended subgrade preparation. Although not encountered in our borings, we recommend soils containing organics greater than 5 percent or other unsuitable materials be removed from utility subgrade and replaced with MnDOT select granular (MnDOT 3149.2.B) as referenced in Table 8 below.

C.2.c. Excavated Slopes

Based on the borings, we anticipate many of the on-site soils in excavations will consist of granular glacial deposits and fill materials. These soils are typically considered Type C Soil under OSHA (Occupational Safety and Health Administration) guidelines. OSHA guidelines indicate unsupported excavations in Type C soils should have a gradient no steeper than 1:1 $1 / 2 \mathrm{~V}: \mathrm{H}$. Slopes constructed in this manner may still exhibit surface sloughing. OSHA requires an engineer to evaluate slopes or excavations over 20 feet in depth.

An OSHA-approved qualified person should review the soil classification in the field. Excavations must comply with the requirements of OSHA 29 CFR, Part 1926, Subpart P, "Excavations and Trenches." This document states excavation safety is the responsibility of the contractor. The project specifications should reference these OSHA requirements.

C.2.d. Selection, Placement and Compaction of Backfill

We recommend general fill placed below the roadway pavement materials and in utility trenches meet the requirements identified in the table below. Any materials to be reused as engineered fill should be tested and approved by the engineer prior to reuse.

Table 8. Engineered Fill Materials*

Locations to Be Used	Engineered Fill Classification	Possible Soil Type Descriptions	Gradation	Additional Requirements
Pavement subgrades Trench backfill Embankment fill (areas with sandy soils)	MnDOT granular material	SP, SP-SM, SM	See MnDOT	
Pavement subgrades Trench backfill Embankment fill (areas with clayey soils soils)	MnDOT select grading	SP, SP-SM, SM, SC, CL	See MnDOT $2106.2 . B .1$	---

Bolton \& Menk, Inc.
Project B2303974
September 15, 2023
Page 15

Locations to Be Used	Engineered Fill Classification	Possible Soil Type Descriptions	Gradation	Additional Requirements
Pavement subbase/drainage layer	Free draining Non-frost-susceptible Utility bedding (dry or moist conditions)	Non-frost-susceptible fill	GPDOT select granular	SP-SM, SW,

*Thicknesses will vary by condition and alternative materials may be required; consult the geotechnical representative to evaluate utility excavations.

We recommend spreading engineered fill in loose lifts of approximately 8 to 12 inches thick. The project documents should not allow the contractor to use frozen material as engineered fill or to place engineered fill on frozen material.

We recommend compacting engineered fill in accordance with the criteria presented below in Table 9. We recommend performing density tests in engineered fill to evaluate if the contractors are effectively compacting the soil and meeting project requirements.

Table 9. Compaction Recommendations Summary

	Relative Reference	Moisture Content Variance from Optimum, percentage points*	
Compaction, percent (ASTM D698 - Standard Proctor)	< 12\% Passing \#200 Sieve (typically SP, SP-SM)	> 12\% Passing \#200 Sieve (typically CL, SC, ML, SM)	
Within 3 feet of top of pavement subgrade	100	± 3	-1 to +3
More than 3 feet below top of pavement subgrade	95	± 3	± 3
Below landscaped surfaces	90	± 5	± 4

[^0]
C.2.e. Corrosion Potential

Most of the soil borings indicated the site predominantly consists of poorly graded sand with silts. We consider these soils non-to-slightly-corrosive to metallic conduits, and utilities should not require cathodic protection. The clayey soils on site are considered moderately corrosive and we recommend providing cathodic protection where needed or bedding utilities in granular soils in these areas.

C.3. New Pavements

C.3.a. Pavement Subgrade Preparation

We recommend the following steps for pavement subgrade preparation, understanding the reconstruction will generally match existing grades.

1. Remove or reclaim and stockpile/windrow the existing pavement.
2. Once the roadway sections are cut to grade, have a geotechnical representative observe the excavated subgrade to evaluate if additional subgrade improvements are necessary. We recommend extending excavations outward from the bottom of the subgrade elevation at a slope of 1:1 V:H or flatter.
3. Scarify, moisture condition, and surface compact to at least 100 percent of Standard Proctor density (non-granular soils) or to the requirements of the MnDOT penetration index method (granular soils).
4. Place pavement engineered fill to grade where required and compact in accordance with Section C.2.d to bottom of pavement section.
5. Test roll the pavement subgrade as described in Section C.3.b.

C.3.b. Pavement Subgrade Test Roll

After preparing the subgrade as described above and prior to the placement of the sand subbase or aggregate base/reclaim, we recommend test rolling the subgrade soils with a fully loaded tandem-axle truck. We also recommend having a geotechnical representative observe the test roll. Areas that fail the test roll likely indicate soft or weak soils that will require additional correction work to support pavements.

The contractor should correct areas that display yielding or rutting greater as described in MnDOT Specification 2111. Possible options for subgrade correction include moisture conditioning and recompaction, subcutting and replacement with soil or crushed aggregate, chemical stabilization and/or geotextiles. We recommend performing a second test roll after the aggregate base material is in place prior to placing bituminous pavement.

C.3.c. Engineered Fill Materials and Compaction

The on-site soils with an organic content less than 5 percent and free of debris are suitable for reuse as pavement subgrade fill and utility trench backfill. The limited clayey soils encountered will be more difficult to compact if wet, allowed to become wet, or if spread and compacted over wet surfaces.

If imported material is to be used, Table 8 contains our recommendations for engineered fill. Similar materials compared to existing should be used to the degree possible; as such, we recommend that imported fill meet the requirements of MnDOT granular material in areas with sandy soils.

C.3.d. Pavement Design Sections, Full Depth Reconstruction

Our scope of services for this project did not include laboratory tests on subgrade soils to determine an R-value for pavement design. However, given the variable nature of typical subgrades, which were a mix of poorly graded sand, silty sand, clayey sand, and lean clay, we recommend using a design R-value of 20 for pavement design on the project. The contractor may need to perform limited removal of unsuitable or less suitable soils, such as those revealed by test roll, to achieve this value.

Based upon the estimated traffic loads and an R-value of 20, we recommend that new pavement sections in the reconstructed residential areas include the following materials and thicknesses per Table 10.

Table 10. Recommended Bituminous Pavement Thickness Design

Layer	Thickness (in)	Material (Specification)
Bituminous wear course	2	SPWEA240C (MnDOT 2360)
Bituminous non-wear course	2	SPNWB230C (MnDOT 2360)

The above pavement design assumes a 20-year performance life. This is the amount of time before we anticipate the pavement will require major rehabilitation. This performance life assumes routine maintenance, such as seal coating and crack sealing. The actual pavement life will vary depending on variations in weather, traffic conditions, and maintenance.

Many conditions affect the overall performance of the pavements. Some of these conditions include the environment, loading conditions and the level of ongoing maintenance. Regarding bituminous pavements, it is common to have thermal cracking develop within the first few years of placement and continue throughout the life of the pavement. We recommend developing a regular maintenance plan for filling cracks in pavements to lessen the potential impacts for cold weather distress due to frost heave or warm weather distress due to wetting and softening of the subgrade.

C.3.e. Pavement Materials Placement

We recommend placing the bituminous wear and non-wear courses to meet the requirements of MnDOT Specification 2360.

We recommend compacting the aggregate base to meet the requirements of MnDOT Specification 2211.3.D.2.c (Penetration Index Method for the dynamic cone penetrometer [DCP]).

C.4. Pavement Rehabilitation Areas

Milling should proceed per MnDOT Specification 2232, with bituminous paving in general accordance with MnDOT Specification 2360. For mill and overlay sections, we recommend a 2 -inch mill depth and replacement with SPWEA240C.

For full-depth mill areas, we recommend replacement with the same pavements used for reconstruction as shown in Table 10. Prior to paving, the exposed aggregate base should be graded, recompacted and test rolled as described in Section C.3.b.

D. Procedures

D.1. Penetration Test Borings

We drilled the penetration test borings with a truck-mounted core and auger drill equipped with hollowstem auger. We performed the borings in general accordance with ASTM D6151 taking penetration test samples at 2 1/2- or 5-foot intervals in general accordance with ASTM D1586. The boring logs show the actual sample intervals and corresponding depths. We sealed penetration test boreholes meeting the Minnesota Department of Health (MDH) Environmental Borehole criteria with an MDH-approved grout.

D.2. Pavement Cores and Hand Auger Borings

We obtained core samples of the pavement using a portable coring machine advancing a 4-inch diameter core barrel. We measured the cores to obtain approximate bituminous thickness and noted their material conditions based on visual observation. The Appendix includes images of the cores.

We drilled hand auger borings with a 3-inch-diameter bucket auger. We advanced the borings to a depth of approximately 36 inches and measured the thickness of the layers present.

Immediately after completing the coring and hand augers, we repaired the bituminous pavement with a cold-mix bituminous patch.

D.3. Exploration Logs

D.3.a. Log of Boring Sheets

The Appendix includes Log of Boring sheets for our penetration test borings. The logs identify and describe the penetrated geologic materials and present the results of penetration resistance tests performed. The logs also present the results of laboratory tests performed on penetration test samples, and groundwater measurements.

We inferred strata boundaries from changes in the penetration test samples and the auger cuttings. Because we did not perform continuous sampling, the strata boundary depths are only approximate. The boundary depths likely vary away from the boring locations, and the boundaries themselves may occur as gradual rather than abrupt transitions.

D.3.b. Geologic Origins

We assigned geologic origins to the materials shown on the logs and referenced within this report, based on: (1) a review of the background information and reference documents cited above, (2) visual classification of the various geologic material samples retrieved during the course of our subsurface exploration, (3) penetration resistance testing performed for the project, (4) laboratory test results, and (5) available common knowledge of the geologic processes and environments that have impacted the site and surrounding area in the past.

D.4. Material Classification and Testing

D.4.a. Visual and Manual Classification

We visually and manually classified the geologic materials encountered based on ASTM D2488. When we performed laboratory classification tests, we used the results to classify the geologic materials in accordance with ASTM D2487. The Appendix includes a chart explaining the classification system we used.

D.4.b. Laboratory Testing

The exploration logs in the Appendix note the results of the laboratory tests performed on geologic material samples. We performed the tests in general accordance with ASTM or AASHTO procedures.

D.5. Groundwater Measurements

The drillers checked for groundwater while advancing the penetration test borings, and again after auger withdrawal. We then filled the boreholes or allowed them to remain open for an extended period of observation, as noted on the boring logs.

E. Qualifications

E.1. Variations in Subsurface Conditions

E.1.a. Material Strata

We developed our evaluation, analyses and recommendations from a limited amount of site and subsurface information. It is not standard engineering practice to retrieve material samples from exploration locations continuously with depth. Therefore, we must infer strata boundaries and thicknesses to some extent. Strata boundaries may also be gradual transitions, and project planning should expect the strata to vary in depth, elevation and thickness, away from the exploration locations.

Variations in subsurface conditions present between exploration locations may not be revealed until performing additional exploration work, or starting construction. If future activity for this project reveals any such variations, you should notify us so that we may reevaluate our recommendations. Such variations could increase construction costs, and we recommend including a contingency to accommodate them.

E.1.b. Groundwater Levels

We made groundwater measurements under the conditions reported herein and shown on the exploration logs, and interpreted in the text of this report. Note that the observation periods were relatively short, and project planning can expect groundwater levels to fluctuate in response to rainfall, flooding, irrigation, seasonal freezing and thawing, surface drainage modifications and other seasonal and annual factors.

E.2. Continuity of Professional Responsibility

E.2.a. Plan Review

We based this report on a limited amount of information, and we made a number of assumptions to help us develop our recommendations. We should be retained to review the geotechnical aspects of the designs and specifications. This review will allow us to evaluate whether we anticipated the design correctly, if any design changes affect the validity of our recommendations, and if the design and specifications correctly interpret and implement our recommendations.

E.2.b. Construction Observations and Testing

We recommend retaining us to perform the required observations and testing during construction as part of the ongoing geotechnical evaluation. This will allow us to correlate the subsurface conditions exposed during construction with those encountered by the borings and provide professional continuity from the design phase to the construction phase. If we do not perform observations and testing during construction, it becomes the responsibility of others to validate the assumption made during the preparation of this report and to accept the construction-related geotechnical engineer-of-record responsibilities.

E.3. Use of Report

This report is for the exclusive use of the addressed parties. Without written approval, we assume no responsibility to other parties regarding this report. Our evaluation, analyses and recommendations may not be appropriate for other parties or projects.

E.4. Standard of Care

In performing its services, Braun Intertec used that degree of care and skill ordinarily exercised under similar circumstances by reputable members of its profession currently practicing in the same locality. No warranty, express or implied, is made.

Appendix

© DENOTES APPROXIMATE LOCATION OF
dentand penetration test boring
DENOTES APPROXIMATE LOCATION
PAVEMENT CORE / HAND AUGER
BRAUN
INTERTEC
 \mathfrak{c}
$\sqrt{2}$

See Descriptive Terminology sheet for explanation of abbreviations

See Descriptive Terminology sheet for explanation of abbreviations

LOG OF HAND AUGER

The Science You Build On.
See Descriptive Terminology sheet for explanation of abbreviations

The Science You Build On.
See Descriptive Terminology sheet for explanation of abbreviations

The Science You Build On.
See Descriptive Terminology sheet for explanation of abbreviations

The Science You Build On.
See Descriptive Terminology sheet for explanation of abbreviations

The Science You Build On.
See Descriptive Terminology sheet for explanation of abbreviations

The Science You Build On.
See Descriptive Terminology sheet for explanation of abbreviations

Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests ${ }^{A}$					Soil Classification	
					Group Symbol	Group Name ${ }^{\text {B }}$
	Gravels (More than 50\% of coarse fraction retained on No. 4 sieve)	Clean Gravels (Less than 5% fines ${ }^{c}$)		$\mathrm{C}_{u} \geq 4$ and $1 \leq \mathrm{C}_{\mathrm{c}} \leq 3^{\text {D }}$	GW	Well-graded gravel ${ }^{\text {E }}$
				$\mathrm{C}_{u}<4$ and/or ($\mathrm{C}_{c}<1$ or $\left.\mathrm{C}_{\mathrm{c}}>3\right)^{\text {D }}$	GP	Poorly graded gravel ${ }^{\mathrm{E}}$
		Gravels with Fines (More than 12\% fines ${ }^{\text {c }}$)		Fines classify as ML or MH	GM	Silty gravel ${ }^{\text {EFG }}$
				Fines Classify as CL or CH	GC	Clayey gravel ${ }^{\text {EFG }}$
	Sands (50\% or more coarse fraction passes No. 4 sieve)	Clean Sands (Less than 5\% fines ${ }^{\text {H }}$)		$\mathrm{C}_{u} \geq 6$ and $1 \leq \mathrm{C}_{\mathrm{c}} \leq 3^{D}$	SW	Well-graded sand ${ }^{\prime}$
				$\mathrm{C}_{u}<6$ and/or ($\mathrm{C}_{\mathrm{c}}<1$ or $\mathrm{C}_{\mathrm{c}}>3$) ${ }^{\text {D }}$	SP	Poorly graded sand ${ }^{\prime}$
		Sands with Fines (More than 12% fines ${ }^{\text {H }}$)		Fines classify as ML or MH	SM	Silty sand ${ }^{\text {F G }}$
				Fines classify as CL or CH	SC	Clayey sand ${ }^{\text {FGI }}$
	Silts and Clays (Liquid limit less than 50)	Inorganic	$\mathrm{PI}>7$ and plots on or above "A" line ${ }^{\text {J }}$		CL	Lean clay ${ }^{\text {KLM }}$
			$\mathrm{PI}<4$ or plots below "A" line ${ }^{\text {J }}$		ML	Silt ${ }^{\text {KLM }}$
		Organic	$\frac{\text { Liquid Limit - oven dried }}{\text { Liquid Limit }- \text { not dried }}<0.75$		OL	$\frac{\text { Organic clay KLMN }}{\text { Organic silt KLMO }}$
	Silts and Clays (Liquid limit 50 or more)	Inorganic	PI plots on or above "A" line		CH	Fat clay ${ }^{\text {KLM }}$
			PI plots below "A" line		MH	Elastic silt ${ }^{\text {KLM }}$
		Organic	$\frac{\text { Liquid Limit - oven dried }}{\text { Liquid Limit - not dried }}<0.75$		OH	$\frac{\text { Organic clay }{ }^{K L M P}}{\text { Organic silt } K L M Q}$
Highly Organic Soils		Primarily organic matter, dark in color, and organic odor			PT	Peat

A. Based on the material passing the 3 -inch $(75-\mathrm{mm})$ sieve.
B. If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
C. Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt GW-GC well-graded gravel with clay GP-GM poorly graded gravel with silt GP-GC poorly graded gravel with clay
D. $C_{u}=D_{60} / D_{10}$

$$
\mathrm{C}_{\mathrm{c}}=\left(D_{30}\right)^{2} /\left(D_{10} \times D_{60}\right)
$$

E. If soil contains $\geq 15 \%$ sand, add "with sand" to group name.
F. If fines classify as CL-ML, use dual symbol GC-GM or SC-SM.
G. If fines are organic, add "with organic fines" to group name.
H. Sands with 5 to 12% fines require dual symbols:

SW-SM well-graded sand with silt
SW-SC well-graded sand with clay SP-SM poorly graded sand with silt SP-SC poorly graded sand with clay
I. If soil contains $\geq 15 \%$ gravel, add "with gravel" to group name.
J. If Atterberg limits plot in hatched area, soil is CL-ML, silty clay.
K. If soil contains 15 to < 30% plus No. 200, add "with sand" or "with gravel", whichever is predominant.
L. If soil contains $\geq 30 \%$ plus No. 200, predominantly sand, add "sandy" to group name.
M. If soil contains $\geq 30 \%$ plus No. 200 predominantly gravel, add "gravelly" to group name.
N. PI ≥ 4 and plots on or above "A" line.
O. $\mathrm{PI}<4$ or plots below " A " line.
P. PI plots on or above " A " line.
Q. PI plots below " A " line.

	Relative Proportions ${ }^{\text {L, M }}$
trace. 0 to 5\%
little..	... 6 to 14\%
with.	≥ 15

Inclusion Thicknesses
lens............................... 0 to $1 / 8^{\prime \prime}$
seam...................... $1 / 8$ to 1 "
layer............................... over 1"
\qquad
Apparent Relative Density of Cohesionless Soils
Very loose 0 to 4 BPF
Loose 5 to 10 BPF
Medium dense.............. 11 to 30 BPF
Dense............................ 31 to 50 BPF
Very dense.................... over 50 BPF

Consistency of	Blows	Approximate Unconfined
Cohesive Soils	Per Foot	Compressive Strength
Very soft.	0 to 1 BPF <0.25 tsf
Soft.	2 to 4 BPF 0.25 to 0.5 tsf
Medium......	5 to 8 BPF 0.5 to 1 tsf
Stiff.	9 to 15 BP 1 to 2 tsf
Very Stiff......	16 to 30 B 2 to 4 tsf
	over 30	

Moisture Content:

Dry: Absence of moisture, dusty, dry to the touch.
Moist: Damp but no visible water.
Wet: Visible free water, usually soil is below water table.

Drilling Notes:

Blows/ N -value: Blows indicate the driving resistance recorded for each 6 -inch interval. The reported N -value is the blows per foot recorded by summing the second and third interval in accordance with the Standard Penetration Test, ASTM D1586.

Partial Penetration: If the sampler could not be driven through a full 6-inch interval, the number of blows for that partial penetration is shown as \#/x" (i.e. 50/2"). The N-value is reported as "REF" indicating refusal.

Recovery: Indicates the inches of sample recovered from the sampled interval. For a standard penetration test, full recovery is $18^{\prime \prime}$, and is $24^{\prime \prime}$ for a thinwall/shelby tube sample.

WOH: Indicates the sampler penetrated soil under weight of hammer and rods alone; driving not required.
WOR: Indicates the sampler penetrated soil under weight of rods alone; hammer weight and driving not required.
Water Level: Indicates the water level measured by the drillers either while drilling (∇), at the end of drilling ($\overline{\boldsymbol{Z}}$), or at some time after drilling ($\boldsymbol{\nabla}$).

Sample Symbols			
Standard Penetration Test	Rodified California (MC)		
Thinwall (TW)/Shelby Tube (SH)			
Auger	Texas Cone Penetrometer		
Grab Sample	Dynamic Cone Penetrometer		

Core \#:	C-1	Project: B2303974	
Pavement thickness:	$23 / 4$ inches	Agg base thickness:	3 inches
Facility:	City of Hopkins, 3rd Street N	B AUN	
Date:	May 2023	NTERTEC	
Notes: Recycled aggregate base			

Core \#:	C-2			Project: B2303974 BRAUN
Pavement thickness	$41 / 2$ inches	Agg base thickness:	$81 / 2$ inches	
Facility:	City of Hopkins, 2nd Street N			NTERTE
Date:	May 2023			NTERTEC
Notes: Limestone aggregate base				

Core \#:	C-3			Project: B2303974 BRAUN
Pavement thickness:	$41 / 2$ inches	Agg base thickness:	12 inches	
Facility:	City of Hopkins - 2nd Street N			NTERTEC
Date:	May 2023			INTERTE
Notes: Recycled aggregate base				

Core \#:	C-4			Project: B2303974 BRAUN
Pavement thickness	$51 / 2$ inches	Agg base thickness:	$41 / 2$ inches	
Facility:	City of Hopkins - 1st Street N			NTERTEC
Date:	May 2023			NTERTEC

Notes: Recycled aggregate base

Core \#:	C-5			Project: B2303974 BRAUN
Pavement thickness:	$91 / 2$ inches	Agg base thickness:	--	
Facility:	City of Hopkins			INTERTEC
Date:	May 2023			

Notes: No apparent aggregate base; sandy subgrade soils with gravel directly below bituminous pavement

Core \#:	C-6			Project: B2303974 BRANN
Pavement thickness	5 inches	Agg base thickness:	19 inches	
Facility:	City of Hopkins			NTERTEC
Date:	May 2023			INTERTEC
Notes: Limestone aggregate base				

Services Provided:

Civil and Municipal Engineering
Water and Wastewater Engineering
Traffic and Transportation Engineering
Aviation Planning and Engineering
Water Resources Engineering
Coatings Inspection Services
Landscape Architecture Services
Surveying and Mapping
Geographic Information System Services
Funding Assistance

www.bolton-menk.com

[^0]: *Alternatively, use the penetration index method (MnDOT Specification 2106.3.G.3) for soils with P200 < 20\%. Consult MnDOT 2106.3.C for alternative moisture content controls when using Specified Density for soils.

