## MEMORANDUM

Date: November 9th, 2023
To: Mike Waltman, P.E. Jordan City Engineer

From: Ross Tillman, P.E.
Chloe Weber, EIT
Subject: Sunset Drive Traffic Operations
City of Jordan
Project No.: OT1131561

## Introduction

In 2019, a traffic study was performed in the area of the Jordan Public Schools to identify existing traffic challenges and to develop possible solutions that improve safety, maintain access, and provide acceptable mobility for future expansion and development of the school property and adjacent land. The prior report analyzed the existing conditions, future conditions, and the build options for the area.

Part of the study was to anticipate traffic operations along Sunset Drive given a reconfiguration of the internal school site layout, including changing the structure of the parent drop-off at the elementary school and combining the elementary and high school access points. Since 2019, the anticipated internal site layout has changed, prompting the traffic operations to be analyzed again with updated conditions. Therefore, the area studied and summarized in this memorandum was reduced to the school accesses, Hillside Drive, and Timber Ridge Court.

The study area is located in the City of Jordan, MN in Scott County. See Figure 1 for the project location map. The study area is located just south and east of TH 169.

Figure 1: Project Location Map


The updated proposed roadway changes along Sunset Drive include two compact roundabouts at the elementary school access and the intersection of Sunset Drive/Hillside Drive. See Figure 2, below.

Figure 2: Proposed Roundabout Layout on Sunset Drive at Hillside Drive and Jordan Middle School/Elementary School Access


## Data Collection

Data was collected in May 2019 as part of the previous study. The updated analysis was completed using the same turning movement volumes and 2040 projections. Three peaks were analyzed; AM Peak (7:15 am to 8:15 am), Afternoon Peak ( $2: 45 \mathrm{pm}$ to 3:45 pm ), and PM Peak ( $4: 30 \mathrm{pm}$ to 5:30 pm). Turning movement count details can be seen in the previous study report, which is found in the Appendix.

## Traffic Forecasting

The traffic forecasting accounts for growth based on the school enrollment estimations - which was anticipated to be a $22 \%$ increase from 2019 to 2040, as well as an increase in background traffic growth caused by adjacent and regional development. For further detail, see the 2019 Jordan School Area Traffic Study in the Appendix. Turning movements for this analysis were altered to assume that all school traffic would be entering and exiting from the school entrances on Sunset Dr, whereas previously some had been assumed to use the southern elementary school driveway on Aberdeen Ave.

## Safety and Compliance

## Crash History

The 2019 Jordan School Area Traffic Study had analyzed a three-year period for safety evaluation (20152017). In this period, there were two crashes at the intersection of Sunset Dr and Hillside Dr (one rightangle and one bicycle crash, resulting in a possible injury and minor injury). This intersection was under the statewide average for observed crash rate. For further detail on the safety analysis, see the 2019 Jordan School Area Traffic Study in the Appendix.
The intersection of Sunset Dr and Timber Ridge Ct is known to have safety concerns. A serious pedestrian crash occurred near the intersection in September 2023. The traffic control, crosswalk placement, and sun glare/visibility of this intersection were taken into consideration when considering the design and enhancements along Sunset Dr.

## Stop Sign Compliance

Due to the fact that the existing all-way stop control at Sunset Dr and Hillside Dr is unwarranted per vehicular volume requirements, an analysis was done to assess the compliance of drivers at the intersection. In a visual review over the fifteen-minute period leading into the afternoon peak hour, approximately $30 \%$ of drivers were seen rolling through the intersection (slowing down, but not fully stopping). This poses a safety risk to all modes of traffic, but specifically pedestrians and bicyclists crossing this intersection.

## Warrant Analysis

The 2019 Jordan School Area Traffic Study found that the current all-way stop intersection of Sunset Drive and Hillside Drive does not meet warrants for an all-way stop control due to traffic volumes alone, as prescribed in the Minnesota Manual on Uniform Traffic Control Devices. Installing all-way stop controlled intersections when unwarranted by traffic volume may lead to non-compliance. Intersection specific compliance was discussed in the Stop Sign Compliance section of this memorandum. An additional all-way stop alternative was evaluated after the 2019 study and documented in this updated analysis.

## Traffic Operations

An operations analysis was completed for the AM, Afternoon, and PM peak hours using the 2040 Build Condition turning movements. The operational analysis results are described as a Level of Service (LOS) ranging from A to $F$. These letters serve to describe a range of operating conditions for different types of facilities. Levels of Service are calculated based on the Highway Capacity Manual 6 ${ }^{\text {th }}$ Edition, which base the level of service on control delay. Control delay is the delay experienced by vehicles slowing down as they are approaching the intersection, the wait time at the intersection, and the time for the vehicle to speed up through the intersection and enter into the traffic stream. The average intersection control delay is a volume weighted average of delay experienced by all motorists entering the intersection on all intersection approaches. Level of service $D$ is commonly taken as an acceptable design year LOS in the suburban area of the Twin Cities metro region.

The level of service and its associated intersection delay for a signalized and unsignalized intersection is presented below. The delay threshold for unsignalized intersections is lower compared to signalized intersections, which accounts for the fact that people expect a higher level of service when at a stopcontrolled intersection. Roundabouts are considered unsignalized intersections.

Table 1 details the control delay thresholds for signalized and unsignalized intersections.
Table 1: Level of Service Criteria

| LOS | Signalized | Unsignalized |
| :---: | :---: | :---: |
|  | Control Delay per Vehicle (sec.) | Control Delay per Vehicle (sec.) |
| A | $\leq 10$ | $\leq 10$ |
| B | $>10$ and $\leq 20$ | $>10$ and $\leq 15$ |
| C | $>20$ and $\leq 35$ | $>15$ and $\leq 25$ |
| D | $>35$ and $\leq 55$ | $>25$ and $\leq 35$ |
| E | $>55$ and $\leq 80$ | $>35$ and $\leq 50$ |
| F | $>80$ | $>50$ |

## Alternative 1: Compact Roundabout/All-Way Stop Combination

Per the previous study, the all-way stop controlled option at the eastern intersection of Sunset Dr and Hillside Dr was found to be unwarranted when considering traffic volume thresholds and also have poor anticipated traffic operations. However, with the new internal layout of the school's entrances and lot circulation, a hybrid compact roundabout/all-way stop concept was reconsidered. The former school access concept proposed a shared elementary/high school access, whereas the current concept retains the existing high school access at all-way stop, and considers only the westerly proposed roundabout at the new elementary/CERC access. Analysis was completed by looking at the simulated behavior of the eastern intersection of Sunset Dr and Hillside Dr as an all-way stop controlled intersection.

The all-way stop controlled intersection was analyzed in Synchro/SimTraffic version 11. Table 2 shows the operational results for the eastern intersection.

Table 2: All-Way Stop Controlled Operational Results

| Intersection | Approach | AM Peak Hour |  |  |  |  |  | Afternoon Peak Hour |  |  |  |  |  | PM Peak Hour |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Approach |  | Intersection |  | Queue Length (ft) |  | Approach |  | Intersection |  | Queue Length (ft) |  | Approach |  | Intersection |  | Queue Length (ft) |  |
|  |  | $\begin{array}{\|c\|} \hline \text { Delay } \\ \text { (sec/veh) } \\ \hline \end{array}$ | LOS | $\begin{array}{\|c\|} \hline \text { Delay } \\ \text { (sec/veh) } \end{array}$ | LOS | Avg | Max | $\begin{array}{\|c\|} \hline \text { Delay } \\ \text { (sec/veh) } \end{array}$ | LOS | $\begin{array}{\|c\|} \hline \text { Delay } \\ \text { (sec/veh) } \end{array}$ | LOS | Avg | Max | $\begin{array}{\|c\|} \hline \text { Delay } \\ \text { (sec/veh) } \end{array}$ | LOS | $\begin{array}{\|c\|} \hline \text { Delay } \\ \text { (sec/veh) } \end{array}$ | LOS | Avg | Max |
| Sunset Dr and Hillside Dr/High School Access | EB | 13 | B | 11 | B | 100 | 250 | 5 | A | 29 | D | 50 | 100 | 5 | A | 5 | A | 50 | 100 |
|  | WB | 11 | B |  |  | 50 | 125 | 6 | A |  |  | 50 | 100 | 7 | A |  |  | 50 | 100 |
|  | NB | 10 | B |  |  | 50 | 175 | 65 | F |  |  | 225 | 500 | 6 | A |  |  | 25 | 75 |
|  | SB | 10 | B |  |  | 75 | 175 | 5 | A |  |  | 50 | 75 | 6 | A |  |  | 50 | 125 |

Table 2 shows that all approaches at Sunset Dr and Hillside Dr operate with overall LOS B, D, and A for the AM, Afternoon, and PM Peak respectively. The afternoon peak shows the highest anticipated delay with overall 29 seconds per vehicle on average.

The northbound approach at the high school shows over a minute of delay per vehicle (LOS F) and a maximum queue that is anticipated to block the parking stalls on the north side of the building. Excessive delay may cause drivers to make riskier maneuvers in order to continue to their destination. In an area with both younger pedestrians and younger drivers, minimizing delay on and around school property is a priority.

Page: 5

## Alternative 2: Two Compact Roundabouts

Prior analysis utilized the Highway Capacity Software (HCS) Version 7 to analyze the roundabout operations. HCS uses equation-based theory to calculate operational results of delay and queueing. In this analysis, the roundabouts were analyzed using Junctions 10 ARCADY (Assessment of Roundabout Capacity and Delay) software. ARCADY uses simulation-based modeling to conclude the same operational metrics. When considering two intersections in close proximity, the queueing and delay at one may impact the other. Therefore, simulating the two intersections in the same model together in ARCADY provides more detailed results that reflect the driver behavior and intersection proximity impacts. Details on the approach delay, intersection delay, LOS, and queuing information for the analysis periods are shown in Table 3, below.

Table 3: Compact Roundabout Operational Results

| Intersection | Approach | AM Peak Hour |  |  |  |  |  | Afternoon Peak Hour |  |  |  |  |  | PM Peak Hour |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Approach |  | Intersection |  | Queue Length (ft) |  | Approach |  | Intersection |  | Queue Length (ft) |  | Approach |  | Intersection |  | Queue Length (ft) |  |
|  |  | Delay <br> (sec/veh) | LOS | Delay (sec/veh) | LOS | Avg | Max | Delay (sec/veh) | LOS | $\begin{array}{\|c\|} \hline \text { Delay } \\ \text { (sec/veh) } \\ \hline \end{array}$ | LOS | Avg | Max | Delay <br> (sec/veh) | LOS | Delay (sec/veh) | LOS | Avg | Max |
| Sunset Dr and | EB | 16 | C | 13 | B | 100 | 350 | 5 | A | 5 | A | 25 | 50 | 6 | A | 6 | A | 25 | 100 |
| Elementary | WB | 7 | A |  |  | 25 | 75 | 5 | A |  |  | 25 | 50 | 6 | A |  |  | 25 | 75 |
| School/CERC | NB | 14 | B |  |  | 75 | 200 | 5 | A |  |  | 25 | 50 | 5 | A |  |  | 25 | 25 |
| Access | SB | 7 | A |  |  | 0 | 25 | 0 | A |  |  | 0 | 25 | 5 | A |  |  | 0 | 25 |
| Sunset Dr and Hillside Dr/High School Access | EB | 32 | D | 19 | C | 200 | 325 | 6 | A | 7 | A | 25 | 50 | 6 | A | 6 | A | 25 | 75 |
|  | WB | 8 | A |  |  | 25 | 50 | 6 | A |  |  | 25 | 25 | 5 | A |  |  | 25 | 25 |
|  | NB | 10 | A |  |  | 25 | 75 | 12 | B |  |  | 50 | 125 | 6 | A |  |  | 25 | 25 |
|  | SB | 14 | B |  |  | 75 | 225 | 6 | A |  |  | 25 | 50 | 7 | A |  |  | 25 | 75 |

Table 3 shows that the two mini roundabouts would be anticipated to operate acceptably through 2040. The intersections overall operate with LOS A during both the afternoon and PM peaks hours. In the AM peak hour, the roundabouts are anticipated to operate with LOS B and C at the western and eastern intersections, respectively. At the eastern roundabout, the eastbound approach shows LOS D in the AM peak. With an approximate spacing of 350 feet between the roundabout entrances, no queue between the two roundabouts is anticipated to impact the other. Additionally, the spacing in the school parking lots is expected to be sufficient for these queues. None of the queues in the internal lots are anticipated to extend into areas where parking stalls exist.

## Other Considerations

## Roundabout Safety

A single lane compact roundabout would reduce the number of conflict points at each intersection from at least 32 conflict points to 8 conflict points. Data published by MnDOT's Office of Traffic Engineering "A Study of the Traffic Safety at Roundabouts in Minnesota" indicates that single -lane roundabouts have similar crash rates compared to all-way stop controlled intersections but have around 45 percent fewer fatal and serious injury crashes. The MnDOT report also shows that single lane roundabouts were found to reduce right angle crashes by 68\%.

## Pedestrian Safety

Additionally, pedestrian safety is improved with the installation of a roundabout (or multiple roundabouts) as median refuges allow pedestrians to cross only one lane of traffic and only one direction of traffic at a time. The provision of splitter islands on the roundabout also reduces the pedestrian crossing distances. This is an improvement from the existing condition where pedestrians cross multiple lanes of traffic at once.

Additionally, due to the nature of roundabout design, speeds within the roundabouts and in the vicinity of the roundabouts are reduced. In an area adjacent to schools, $24 / 7$ speed reduction and subsequent traffic calming will produce a safer street. Unlike stop signs which do not require vehicles to slow down but rather rely on compliance, roundabout geometry causes constant lower speed enforcement. Compact roundabout designs are often for 15 MPH.

## RRFB placement

Due to the high pedestrian activity in the area and between the two schools, pedestrian safety and comfort was a priority in the redesign of the school access points' crossings both along and across Sunset Dr. Roundabouts at these locations are anticipated to increase pedestrian safety due to shorter crossing distances and slower vehicular speeds. However, the addition of rectangular rapid-flashing beacons (RRFBs) on certain crossings at the roundabouts is also expected to increase pedestrian visibility and therefore yield compliance.

Additionally, the "School Travel Safety Assessment" conducted by Dakota County in collaboration with the Minnesota Department of Transportation draft report (January 15, 2021) section on 'School Crossings at Single Lane Roundabouts" included a research study and best practices for school crossings at single lane roundabouts, and specifically the use of RRFBs. The draft report notes that "There is no guidance or best practice to install RRFB for the crosswalks at a single-lane roundabout; however, RRFB at one or more roundabout crosswalks may be beneficial to the visibility of the school crossing or to increase drivers' yielding behavior." The study considerations include:

- The degrees of curvature at the roundabout should be evaluated and increased where feasible to decrease driver speeds at the crosswalks.
- RRFBs may be considered where the school route plan includes crossing a leg of the single-lane roundabout.
- RRFBs are not recommended for all legs of the roundabout and should be prioritized on the leg of the roundabout where the school crossing is located. Driver speeds tend to be higher and driver yielding tends to be lower at roundabout exits compared with roundabout entrances.
- Adult crossing guards are still needed for middle school and elementary students crossing at a roundabout, even if RRFBs are installed. Crossing guards should be trained to use the RRFB push buttons even if they have a stop paddle or school patrol flag.
- Students should be trained to follow the direction of the adult crossing guard, and to wait for the crossing guard to enter the crosswalk and stop traffic, even if the RRFB is flashing.

The key study recommendations and considerations from the "School Travel Safety Assessment" are applicable to the Sunset Drive school area roundabouts. The conditions at the school crossings on county and state roads evaluated in the "School Travel Safety Assessment" indicate that an RRFB would be appropriate, but the final determination should be made as part of the design of each location.

As such, the locations of the RRFBs to be installed were determined based on the pedestrian volume, conflicting vehicular volume, existing safety concerns, and consolidation of pedestrian crossings. The relocation of the crosswalk at Timber Ridge Ct to the west leg of the westerly roundabout was prompted by the pedestrian safety concerns and crash history of the current intersection crossing. The high pedestrian volume and high conflicting vehicular volume was justification for the installation of the other two RRFBs on the two legs between the roundabouts (the western crossing at the high school entrance, and the eastern crossing at the elementary school entrance.

## Site Circulation

The previous study contemplated a proposed shared access between the elementary school and high school. The previous study also considered queuing within the internal site, to confirm that no traffic should have backed up on the main road. The previous study stated that in 2040, it was anticipated that the internal site would need 1,275 feet of storage to accommodate expected enrollment.

With vehicles lining up and dwelling in a parent pick up loop at the elementary school, the circulation and queueing was analyzed again with the updated site layout plan (maintaining two separate access points on Sunset Dr). It was found that with a simulated dwell period of up to five minutes, the queues in the elementary school lot during the peak hour are not expected to back into the roundabout to affect operations. In otherwords, the space provided within the elementary school site is anticipated to be sufficient for parent pick-up and drop-off queues. The proposed design shows approximately 1,500 feet of storage from entrance to exit of the roundabout within the elementary school site.

## Additional Analysis

The intersection at Beaumont Blvd, Aberdeen Ave, and Sunset Dr was analyzed for potential reconfiguration due to the proximity to the proposed changes at the schools. It is currently configured as a T-intersection where all approaches are stop controlled, though the intersection does not meet allway stop control warrants based on volumes alone. Based on traffic volumes, an alternative considered for this location is to reconstruct the curvature of Sunset Dr / Aberdeen Ave to allow traffic to freely move between, and keep Beaumont Blvd stop controlled (in other words converting the intersection to a side-street stop for Beaumont Blvd only). Table 4 shows the 2040 operational results for the existing (all way stop control) and potential alternative (side street stop control) at this intersection.
Table 4: Beaumont Ave/Sunset Dr/Aberdeen Ave Intersection Operational Summary

| Intersection Control | Approach | AM Peak Hour |  |  |  |  |  | Afternoon Peak Hour |  |  |  |  |  | PM Peak Hour |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Approach |  | Intersection |  | Queue Length ( ft ) |  | Approach |  | Intersection |  | Queue Length (ft) |  | Approach |  | Intersection |  | Queue Length (ft) |  |
|  |  | Delay <br> (sec/veh) | LOS | Delay (sec/veh) | LOS | Avg | Max | Delay (sec/veh) | LOS | Delay (sec/veh) | LOS | Avg | Max | Delay (sec/veh) | LOS | $\begin{array}{\|c\|} \hline \text { Delay } \\ \text { (sec/veh) } \\ \hline \end{array}$ | LOS | Avg | Max |
| All Way Stop | EB | 6 | A | 6 | A | 50 | 75 | 6 | A | 7 | A | 25 | 75 | 6 | A | 3 | A | 25 | 50 |
|  | WB | 5 | A |  |  | 50 | 75 | 6 | A |  |  | 50 | 125 | 4 | A |  |  | 75 | 100 |
|  | NB | 8 | A |  |  | 75 | 100 | 8 | A |  |  | 75 | 125 | 5 | A |  |  | 50 | 75 |
| Side Street Stop (Beaumont Blvd-EB) | EB | 8 | A | 1 | A | 50 | 75 | 8 | A | 1 | A | 50 | 75 | 8 | A | 1 | A | 25 | 50 |
|  | WB | 1 | A |  |  | 0 | 0 | 1 | A |  |  | 0 | 0 | 1 | A |  |  | 0 | 0 |
|  | NB | 1 | A |  |  | 0 | 0 | 2 | A |  |  | 25 | 50 | 2 | A |  |  | 25 | 50 |

In 2040, the intersection is anticipated to operate with overall LOS A in all peak periods. This layout would reduce delay and queues along Aberdeen Ave and Sunset Dr, without large impacts to Beaumont Blvd. No queues are anticipated to impact nearby intersections.

However, there may be safety and sightline concerns if the geometry and control were changed. The northbound left movement from Aberdeen Ave to Beaumont Blvd would need to be able to see clearly around the curve for any westbound traffic along Sunset Dr. Additionally, the westbound left traffic turning into the elementary school truck access just west of Timber Ridge Ct would need to be able to see any northbound traffic on Aberdeen Ave to safely make its turn. Therefore, any reconfiguration would need to consider these sight triangles to provide proper clear views from any vertical obstructions to the sightlines of the vehicles. The radius of the proposed curve would impact these sight lines as well as the speeds at which vehicles can navigate the corner. Both need to be considered if the alternative moves forward to achieve a safe design. At concept level review, reconfiguration of the intersection does not appear prudent, as benefits are minimal if any while there would be impacts and associated costs with any change. LOS A is anticipated under the current configuration in 2040.

## Conclusion

The traffic operations shown in this memorandum have been updated to reflect proposed geometric layout improvements developed following the initial 2019 Jordan School Area Traffic Study. This analysis also revisited previous concepts with more detailed simulation-based analysis, as simulation considers the interdependence of nearby intersections. The operations results shown in this update compared to the prior study are different, though based on the methodology used are considered a more accurate representation of what will occur in the field.

The previous study recommended side-street stop control pairs at both intersections or two mini roundabout intersections on Sunset Dr, with various degrees of change to the internal site. This analysis (with updated internal layout assumptions) show that dual compact roundabouts have more benefits than a combination of a mini roundabout and an all-way stop controlled intersection, as well as other alternatives evaluated in 2019.

Operations show that during the school release and the PM peak, both roundabouts operate with LOS A overall, and all movements at LOS B or better. During the AM peak, the western intersection of Sunset Dr and the elementary school/CERC access operates with LOS C or better for all movements, and LOS B overall. At the eastern high school access and Hillside Dr intersection, the compact roundabout is anticipated to operate acceptably with LOS D or better for all movements, and LOS C for the intersection overall through 2040. No queues produced by the roundabouts are anticipated to impact internal site parking access or nearby intersections. In comparison, the all-way stop controlled intersection would produce queues that extend through larger portions of the internal site at the High School and cause higher delay (LOS D) at the intersection overall in the school release peak.

More importantly, the unwarranted nature of the all-way stop controlled intersection at Sunset Dr and Hillside Dr has led to non-compliance, which could cause a safety issue with the high volume of pedestrians and bicyclists in the area throughout the day. Analysis shows the intersection will continue to not meet warrants even with growth analyzed in 2040. Roundabouts produce a saferenvironment for multimodal users as the crossing distance is reduced, and pedestrians and bicyclists would only need to cross one lane and one direction of traffic at a time, where motorists are forced to travel at lower speeds. This is even more true when additional treatments are provided to key roundabout crossings, such as the RRFBs proposed with the project.

With the new internal layout considered, the combination of two mini roundabouts or a mini roundabout on the west and an all-way stop controlled intersection on the east were considered. When considering traffic operations, safety, speed control, and compliance, two compact roundabouts are recommended at the intersections of Sunset Dr at Hillside Dr and Sunset Dr and western school access (middle school and elementary school).

Real People. Real Solutions.

## Jordan School Area Traffic Study

City of Jordan
Scott County, MN

August 19, 2019

Submitted by:
Bolton \& Menk, Inc.
12224 Nicollet Avenue
Burnsville, MN 55337
P: 952-890-0509
F: 952-890-8065

## Certification

# Jordan School Area Traffic Study 

City of Jordan, Minnesota

## August 19, 2019

I hereby certify that this plan, specification or report was prepared by me or under my direct supervision, and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

By:


Ross B. Tillman, P.E.
License No. 51692

Date: $\quad 8 / 19 / 2019$

## Table of Contents

I. Introduction ..... 1
II. Existing Conditions ..... 2
A. Data Collection ..... 2
B. Traffic Speed ..... 2
C. Safety Analysis ..... 3
D. Existing Operational Analysis ..... 3
III. Future No Build Conditions ..... 5
A. Traffic Forecasting ..... 5
B. No Build Operational Analysis ..... 5
IV. Future Build Conditions ..... 7
A. Option 1a ..... 7
B. Option 1b ..... 7
V. Alternative Roadway and Access Concepts ..... 8
A. Two-Way Stop Control Option ..... 8
B. All Way Stop Control (Option 1) ..... 9
C. All Way Stop Control (Option 2) ..... 10
D. All Way Stop Control (Option 3) ..... 10
E. Mini Roundabout Option ..... 11
VI. Analysis Summary ..... 12
VII. Recommendations ..... 15
Figures
Figure 1: Project Location Map ..... 1
Tables
Table 1: Aberdeen Ave (between Sunset Dr and Elementary School Access) Vehicle Speed Data ..... 2
Table 2: Sunset Dr (between Timber Ridge Ct and North Elementary Access 4) Vehicle Speed Data ..... 2
Table 3: Sunset Dr (between North Elementary Access 4 and Hillside Dr) Vehicle Speed Data ..... 2
Table 4: Crash Detail ..... 3
Table 5: Level of Service Criteria ..... 4
Table 6: 2019 No Build Operations ..... 4
Table 7: 2040 No Build Operations ..... 6
Table 8: Two-Way Stop Control Operational Analysis ..... 8
Table 9: All Way Stop Control (Option 1) Operational Analysis ..... 9
Table 10: All Way Stop Control (Option 2) Operational Analysis ..... 10
Table 11: All Way Stop Control (Option 3) Operational Analysis ..... 11
Table 12: West Mini-Roundabout Operational Analysis. ..... 11
Table 13: West Mini-Roundabout Queues ..... 12
Table 14: East Mini-Roundabout Operational Analysis ..... 12
Table 15: East Mini-Roundabout Queues ..... 12
AppendixAppendix A: Traffic Volumes
Appendix B: Crash Analysis
Appendix C: No Build Operational Analysis
Appendix D: Provided Layouts
Appendix E: Mitigation Operational Analysis
Appendix F: Mitigation Layouts
Appendix G: Warrant Analysis

## I. Introduction

A traffic study was performed at in the area of the Jordan Public Schools to identify existing traffic challenges and to develop possible solutions that improve safety, maintain access, and provide acceptable mobility for future expansion and development of the school property and adjacent land. This report will analyze the existing conditions, future conditions, and the build options for the area.

The study area is located in the City of Jordan, MN in Scott County. See Figure 1 for the project location map. The study area is located just south and east of TH 169.

Figure 1: Project Location Map


## II. Existing Conditions

The study area includes the following three segments:

- County Road (CR) 66 from Prospect Pointe Rd to Aberdeen Ave
- The posted speed limit is 55 mph .
- The functional class is identified as Major Collector.
- Aberdeen Ave from CR 66 to Sunset Dr
- The posted speed limit is 30 mph and 25 mph during School hours.
- The functional class is identified as Major Collector.
- Sunset Dr from Aberdeen Ave to Hillside Dr/High School Access
- The posted speed limit is 30 mph and 20 mph during School hours.
- The functional class of Sunset Dr from Aberdeen Ave to Hillside Dr is identified as Major Collector. The functional class of the east of Sunset Dr is identified as Minor Collector.


## A. Data Collection

Traffic counts were collected at thirteen (13) intersections along the study area. The counts were completed in May 2019. Three peak hours of traffic were determined from the data collected:
AM Peak
7:15 am to $8: 15 \mathrm{am}$
Afternoon Peak $\quad 2: 45 \mathrm{pm}$ to $3: 45 \mathrm{pm}$
PM Peak $\quad 4: 30 \mathrm{pm}$ to $5: 30 \mathrm{pm}$

Figure 2 in the Appendix A shows existing 2019 peak hour turning movement counts and Average Daily Traffic (ADT).

## B. Traffic Speed

$85^{\text {th }}$ percentile vehicle speeds were also collected at three (3) locations, one location on Aberdeen Ave and two locations on Sunset Dr/Hillside Dr. The $85^{\text {th }}$ percentile speed indicates where only 15 percent of traffic is exceeding that speed and is used, in part, to set speed limit. The tables below show the collected speed information.

Table 1: Aberdeen Ave (between Sunset Dr and Elementary School Access) Vehicle Speed Data

| $85^{\text {th }}$ Percentile Vehicle Speed (mph) | 37 |
| :---: | :---: |
| Posted Speed Limits (mph) | 30 |

Table 2: Sunset Dr (between Timber Ridge Ct and North Elementary Access 4) Vehicle Speed Data

| $85^{\text {th }}$ Percentile Vehicle Speed (mph) | 37 |
| :---: | :---: |
| Posted Speed Limits (mph) | 30 |

Table 3: Sunset Dr (between North Elementary Access 4 and Hillside Dr) Vehicle Speed Data

| $85^{\text {th }}$ Percentile Vehicle Speed (mph) | 33 |
| :---: | :---: |
| Posted Speed Limits (mph) | 30 |

Red text indicates value is greater than the posted speed limits.

## C. Safety Analysis

Crash data was obtained from data administered by the Minnesota Department of Transportation (MnDOT) for a three-year time period (2015-2017). A summary of the crashes at the intersections where crashes occurred are shown in Table 4.

Table 4: Crash Detail
Crash Details

| Crash Details |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intersections | Total <br> Crashes | F | A | B | C | PDO | Bicycle | Right Angle <br> Crashes | Head On |
| Sunset Dr and Hillside Dr | 2 |  |  | 1 | 1 |  | 1 | 1 |  |
| Aberdeen Ave and West <br> Elementary School Access | 1 |  |  |  |  | 1 |  |  | 1 |
| CR 66 and Aberdeen Ave | 2 |  |  |  |  | 2 |  | 1 | 1 |

To determine if there are existing safety issues, the intersection crash rates and the critical rates were compared. The crash rate is the number of crashes per million entering vehicles (MEV). The critical rate is a statistical comparison based on similar intersections statewide. An observed crash rate greater than the critical rate indicates that the intersection operates outside of the expected, normal range. The critical index reports the magnitude of this difference and a critical index of less than one indicates that the intersection is operating within the normal range. All intersections within the study area have a lower crash rate than the statewide average. All critical and severity indices are found to be less than one indicating that the intersections are operating within the normal range compared to similar intersections statewide. Intersection crash rate worksheets and crash diagrams are included in the Appendix B.

## D. Existing Operational Analysis

The traffic operations analysis for the intersections in the project area included an evaluation of existing intersection delay and Level of Service (LOS). LOS results are described using letters ranging from A to F . These letters serve to describe a range of operating conditions for different types of facilities. Levels of Service are calculated based on the Highway Capacity Manual (HCM) $6^{\text {th }}$ Edition, which defines the LOS, based on control delay. Control delay is the delay experienced by vehicles slowing down as they are approaching the intersection, the wait time at the intersection, and the time for the vehicle to speed up through the intersection and enter the traffic stream. The average intersection control delay is a volume weighted average of delay experienced by all motorists entering the intersection on all intersection approaches. The control delay is modeled within the analysis software, Trafficware Synchro and SimTraffic. LOS D or better is considered acceptable. Table 5 shows the control delay thresholds for LOS A through F from the Highway Capacity Manual (HCM) $6^{\text {th }}$ Edition).

Table 5: Level of Service Criteria

|  | Signalized Intersection | Unsignalized Intersection |
| :---: | :---: | :---: |
| LOS | Control Delay per Vehicle (sec.) | Control Delay per Vehicle (sec.) |
| A | $\leq 10$ | $\leq 10$ |
| B | $>10$ and $\leq 20$ | $>10$ and $\leq 15$ |
| C | $>20$ and $\leq 35$ | $>15$ and $\leq 25$ |
| D | $>35$ and $\leq 55$ | $>25$ and $\leq 35$ |
| E | $>55$ and $\leq 80$ | $>35$ and $\leq 50$ |
| F | $>80$ | $>50$ |

The 2019 No Build AM, Afternoon and PM peak traffic volumes were analyzed with current geometry. The results of this analysis are shown in Table 6. Detailed LOS and queues are included in Appendix C.

Table 6: 2019 No Build Operations

| Intersection | Peak Hour | Intersection Delay (1.) |  | Maximum Delay-LOS (2.) |  | Limiting Movement (3.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hillside Dr and High School Access Stop Controlled | AM | 1 | A | 8 | A | NBL |
|  | Afternoon | 1 | A | 4 | A | NBL |
|  | PM | 1 | A | 4 | A | NBL |
| Sunset Dr and Hillside Dr | AM | 5 | A | 6 | A | SBT |
|  | Afternoon | 4 | A | 5 | A | NBT |
| Stop Controlled | PM | 4 | A | 5 | A | WBT |
| Sunset Dr and Middle School Access | AM | 1 | A | 9 | A | SBL |
|  | Afternoon | 0 | A | 3 | A | EBL |
| Stop Controlled | PM | 1 | A | 7 | A | SBL |
| Sunset Dr and North Elementary School Access 4 | AM | 0 | A | 3 | A | WBL |
|  | Afternoon | 1 | A | 5 | A | NBL |
| Stop Controlled | PM | 0 | A | 4 | A | NBR |
| Sunset Dr and North Elementary School Access 3 | AM | 1 | A | 7 | A | NBL |
|  | Afternoon | 1 | A | 1 | A | EBT |
| Stop Controlled | PM | 1 | A | 1 | A | EBT |
| Sunset Dr and North Elementary School Access 2 | AM | 2 | A | 4 | A | EBT |
|  | Afternoon | 2 | A | 3 | A | EBT |
| Stop Controlled | PM | 2 | A | 4 | A | EBT |
|  | AM | 2 | A | 19 | C | SBL |
| Stop Controlled | Afternoon | 1 | A | 12 | B | SBL |
|  | PM | 1 | A | 13 | B | SBL |
| Sunset Dr and North Elementary School Access 1 Stop Controlled | AM | 1 | A | 3 | A | WBL |
|  | Afternoon | 1 | A | 6 | A | NBL |
|  | PM | 0 | A | 4 | A | NBL |
| Sunset Dr and Aberdeen Ave | AM | 4 | A | 6 | A | EBT |
|  | Afternoon | 3 | A | 5 | A | WBT |
| Stop Controlled | PM | 4 | A | 7 | A | EBT |
| Aberdeen Ave and West Elementary School Access | AM | 2 | A | 5 | A | WBL |
|  | Afternoon | 1 | A | 2 | A | WBL |
| Stop Controlled | PM | 1 | A | 5 | A | WBL |
| Aberdeen Ave and Ridge St | AM | 2 | A | 4 | A | WBR |
|  | Afternoon | 1 | A | 3 | A | WBR |
| Stop Controlled | PM | 2 | A | 7 | A | WBL |
| CR 66 and Aberdeen Ave | AM | 6 | A | 10 | B | EBT |
|  | Afternoon | 6 | A | 10 | B | WBT |
| Stop Controlled | PM | 7 | A | 10 | B | WBT |
| CR 66 and Prospect Pointe Rd | AM | 1 | A | 5 | A | NBL |
|  | Afternoon | 1 | A | 4 | A | NBL |
|  | PM | 1 | A | 6 | A | NBL |

[^0]
## Delay:

- All intersections are anticipated to operate with an intersection LOS A.


## Queuing:

- Queues are acceptable at most intersections. However, there are a few approach queues that should be noted within the study area. The following will detail existing traffic queue conditions:
- Aberdeen Ave and West Elementary School Area:
- The queues for school drop off during the AM peak hour extend onto Aberdeen Ave. The maximum queues for school drop off are 975 feet during the AM peak hour, which extends beyond the current storage within the school site.
- The northbound maximum queues are 50 feet and southbound maximum queues are 75 feet during the AM peak hour, which is a result of traffic queuing onto Aberdeen Ave from the site.
- These queues block the southbound through and northbound through movements.


## III. Future No Build Conditions

## A. Traffic Forecasting

The forecasts were determined based on the Annual Average Daily Traffic (AADT) counts available from the City of Jordan 2040 Transportation Plan as well as conceptual site plans/housing numbers for the agricultural property west of Aberdeen. The City of Jordan 2040 Transportation Plan provides daily traffic volume forecasts for the corridor and surrounding areas. The peak hour turning movement counts were grown or reallocated at each count location based on the forecasted AADTs for each leg of the intersection. Figure 3 in the Appendix A details the forecasted 2040 No Build peak hour turning movements. The No Build forecast assumes growth in the area however no growth or changes to the school site.

## B. No Build Operational Analysis

The 2040 No Build AM, Afternoon and PM peak traffic volumes were analyzed with the current geometry. The results of this analysis shown in Table 7. Detailed LOS and queues are included in Appendix C.

Table 7: 2040 No Build Operations

| Intersection | Peak Hour | Intersection Delay (1.) |  | Maximum Delay-LOS (2.) |  | Limiting Movement (3.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hillside Dr and High School Access | AM | 1 | A | 5 | A | NBL |
|  | Afternoon | 1 | A | 5 | A | NBL |
| Stop Controlled | PM | 1 | A | 4 | A | NBL |
| Sunset Dr and Hillside Dr | AM | 5 | A | 6 | A | SBT |
|  | Afternoon | 4 | A | 5 | A | NBT |
| Stop Controlled | PM | 4 | A | 5 | A | WBT |
| Sunset Dr and Middle School Access | AM | 1 | A | 5 | A | SBL |
|  | Afternoon | 0 | A | 3 | A | EBL |
| Stop Controlled | PM | 1 | A | 7 | A | SBL |
| Sunset Dr and North Elementary School Access 4 | AM | 0 | A | 3 | A | WBL |
|  | Afternoon | 1 | A | 5 | A | NBL |
| Stop Controlled | PM | 0 | A | 2 | A | NBR |
| Sunset Dr and North Elementary School Access 3 | AM | 1 | A | 6 | A | NBL |
|  | Afternoon | 1 | A | 2 | A | WBL |
| Stop Controlled | PM | 1 | A | 1 | A | EBT |
| Sunset Dr and North Elementary School Access 2 | AM | 2 | A | 4 | A | EBT |
|  | Afternoon | 1 | A | 3 | A | EBT |
| Stop Controlled | PM | 2 | A | 4 | A | EBT |
| Sunset Dr and Timber Ridge Ct | AM | 3 | A | 34 | D | SBL |
|  | Afternoon | 1 | A | 10 | B | SBL |
| Stop Controlled | PM | 1 | A | 17 | C | SBL |
| Sunset Dr and North Elementary School Access 1 | AM | 1 | A | 3 | A | WBL |
|  | Afternoon | 1 | A | 6 | A | NBL |
| Stop Controlled | PM | 0 | A | 10 | B | NBL |
| Sunset Dr and Aberdeen Ave | AM | 5 | A | 6 | A | WBL |
| Sunset Dr and Aberdeen AveStop Controlled | Afternoon | 3 | A | 6 | A | EBT |
|  | PM | 4 | A | 6 | A | EBT |
| Aberdeen Ave and West Elementary School Access | AM | 26 | D | 37 | E | SBL |
|  | Afternoon | 1 | A | 3 | A | WBL |
| Stop Controlled | PM | 1 | A | 4 | A | WBL |
| Aberdeen Ave and Ridge St | AM | 10 | B | 24 | C | EBL |
|  | Afternoon | 1 | A | 5 | A | EBL |
| Stop Controlled | PM | 2 | A | 6 | A | WBL |
| CR 66 and Aberdeen Ave | AM | 9 | A | 13 | B | EBT |
|  | Afternoon | 8 | A | 12 | B | WBT |
| Stop Controlled | PM | 10 | B | 14 | B | WBT |
| CR 66 and Prospect Pointe Rd | AM | 3 | A | 6 | A | SBL |
|  | Afternoon | 1 | A | 6 | A | SBL |
| Stop Controlled | PM | 2 | A | 8 | A | NBL |

1. Delay in seconds per vehicle
2. Maximum delay and LOS on any approach and/or movement
3. Limiting Movement is the highest delay movement.

Delay:

- All intersections are anticipated to operate with an intersection LOS B or better except for the intersection at Aberdeen Ave and West Elementary School Access. It is anticipated to operate with an intersection LOS D during the AM peak hour.


## Queuing:

- The maximum approach queue for the 2040 No Build analysis is shown in Appendix C, however, there are a few approach queues that should be noted within the study area:
- Aberdeen Ave and West Elementary School Area:
- The queues for school drop off during the AM peak hour are anticipated to extend on to Aberdeen Ave.
- The northbound maximum queues are anticipated to be 250 feet and southbound maximum queues are anticipated to be 175 feet during the AM peak hour.


## IV. Future Build Conditions

The Build forecast accounts for traffic from school enrollment growth, which is estimated to be an $22 \%$ increase from 2019 to 2040. For purposes of this analysis, this increase was assumed to occur immediately to be accounted for in both the 2020 and 2040 Build analysis. Based on traffic generated by 2019 enrollment, the minimum required drop off storage length is 975 feet. Enrollment increases anticipated by 2040 necessitate 1275 feet of drop off storage length for the Elementary School.
Figures 4 and 5 in Appendix A detail the forecasted 2020 Build and 2040 Build conditions. Two reconfigured school area concept layouts were provided by the City of Jordan. Figures 6 to 9 in Appendix D detail the two layouts. Both options were analyzed, with summary information provided below.

## A. Option 1a

## 1. Drop-off/Pick-up Operations

Option 1a provides approximately 450 feet vehicle storage length without extending into Sunset Dr. It is anticipated that this option decreases the existing vehicle storage length by 400 feet. Based on the above analysis and review of the concept drawing, it is anticipated that Option 1a could not be sufficiently modified to meet the needs of the transportation network would also cause additional delays along public roadways. Therefore, additional analysis of Option 1a was not completed.

## B. Option 1b

## 1. Drop-off/Pick-up Operations

Option 1b provides approximately 2000 feet of vehicle storage length without extending onto Sunset Dr. It is anticipated that this option increases the existing vehicle storage length by 1200 feet and would provide sufficient storage length for future enrollment increases.

## 2. Parking

Based on the Option 1b layout, it is determined that a total of 144 stalls will be gained.

## 3. Vehicle access/circulation

An operational analysis was completed in Highway Capacity Software (HCS) Version 7 for the roundabout depicted at the intersection of Sunset Dr and Middle/High School Access. The roundabout was analyzed with single lane approaches for all approaches. The single lane roundabout option is anticipated to operate at LOS F during both AM and Afternoon peak hours in both 2020 and 2040, due to highly peaked, conflicting traffic entering and exiting the school site. The internal site roundabout was also analyzed and was found to provide sufficient operations for the anticipated traffic volumes. Appendix E shows the detailed LOS summary. See Section V for mitigation options analyzed to resolve this capacity issue.

## 4. Bus access/circulation

Option 1b does not appear to separate bus access and vehicle access for both Elementary School and High School, which would imply a mixed drop-off/pick-up zone. This is not recommended for effective operations. See Section V for mitigation options analyzed to resolve this issue.

## 5. Pedestrian/Bicycle accommodations

Option 1b, as provided, does not specifically call out any pedestrian accommodations. We recommend that any roundabouts provide signed and marked crossings on all approaches.

## V. Alternative Roadway and Access Concepts

Alternative geometric designs and traffic control types were considered and analyzed focusing on the Elementary School, the Middle School and the High School accesses. These concept layouts were analyzed using forecasted 2020 and 2040 volumes with Synchro/SimTraffic version 10 software, while roundabout results were calculated using HCS 7 modeling software. Figures 10 to 14 in Appendix F detail the mitigation option layouts. The operations and queues of the following options were analyzed:

- Two-Way Stop Control Option: Two-Way stop control used at both Sunset Dr/Hillside Dr and Sunset Dr/Middle/High School Access intersections. Sunset Drive traffic is not required to stop. This also includes shifting the internal roadway network/internal roundabout southwest to increase stacking distance to Sunset Dr.
- All Way Stop Control (Option 1): All-Way stop control used at both Sunset Dr/Hillside Dr and Sunset Dr/Middle/High School Access intersections.
- All Way Stop Control (Option 2): All-Way stop control used at the intersection of Sunset Dr/Middle/High School Access and two-way stop control used at Sunset Dr/Hillside Dr intersection (east/west not required to stop).
- All Way Stop Control (Option 3): All-Way stop control used at the intersection of Sunset Dr/Hillside Dr and two-way stop control used at Sunset Dr/Middle/High School Access (east/west not required to stop).
- Mini Roundabout Option: Mini roundabout control used at both Sunset Dr/Hillside Dr and Sunset Dr/Middle/High School Access intersections. Access to the schools is split with the Elementary and Middle School using the west roundabout and the high school using the east.

Note that all options include proposed pedestrian treatments and separate bus traffic from parent traffic, as depicted on Figures 10 to 14.

## A. Two-Way Stop Control Option

Two-Way Stop Control option was analyzed for the intersection of Sunset Dr/Hillside Dr and the intersection of Sunset Dr/Middle-High School Access. Table 8 below shows the operational analysis. Detailed operations are attached in the Appendix E. Preliminary layout is attached in the Appendix F.

Table 8: Two-Way Stop Control Operational Analysis

| Year | Intersection | Peak Hour | Intersection Delay (1.) |  | Maximum Delay-LOS (2.) |  | Limiting Movement (3.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2020 | Sunset Dr and Hillside Dr <br> Two-Way Stop Controlled | AM | 3 | A | 12 | B | SBL |
|  |  | Afternoon | 2 | A | 8 | A | SBL |
|  |  | PM | 3 | A | 8 | A | SBL |
|  | Sunset Dr and Middle/High School Access | AM | 11 | B | 69 | F | NBL |
|  |  | Afternoon | 3 | A | 5 | A | NBL |
|  | Two-Way Stop Controlled | PM | 2 | A | 7 | A | NBL |
| 2040 | Sunset Dr and Hillside Dr <br> Two-Way Stop Controlled | AM | 4 | A | 21 | C | SBL |
|  |  | Afternoon | 3 | A | 11 | B | SBL |
|  |  | PM | 3 | A | 11 | B | SBL |
|  | Sunset Dr and Middle/High School Access | AM | 25 | D | 203 | F | NBL |
|  |  | Afternoon | 4 | A | 10 | B | NBL |
|  | Two-Way Stop Controlled | PM | 2 | A | 10 | B | NBL |

[^1]
## Sunset Dr and Hillside Dr

- The intersection is anticipated to operate with an intersection LOS A in 2020 and 2040.
- Maximum southbound right queue is anticipated to be 200 feet during the AM peak hour in 2040.


## Sunset Dr and Middle/High School Access

- The intersection is anticipated to operate with an intersection LOS B or better except for the AM peak hour in 2040. It is anticipated to operate with an intersection LOS D.
- Northbound left movements are anticipated to operate at LOS F during the AM peak hour in 2020 and 2040. Long delays can lead to driver frustration and can increase the likelihood of additional risk taking to exit the site for this short period of time. This could result in an increased crash rate if drivers attempt to turn into smaller gaps in traffic along Sunset Dr.
- Queues are acceptable for all peak hours in 2020 and 2040 with a shifted internal roundabout location providing more stacking distance to Sunset Dr. Maximum northbound queues in 2040 are anticipated to be 400 feet during the AM peak hour as vehicles leave the site after dropping off students.


## B. All Way Stop Control (Option 1)

All Way Stop Control (Option 1) was analyzed for the intersection of Sunset Dr/Hillside Dr and the intersection of Sunset Dr/Middle-High School Access. Although neither intersection meets warrants to install all way stop control based on volumes, they are being considered as a means to control traffic for pedestrian/bicycle crossing. See Appendix G for warrant analysis results. Table 9 details the All Way Stop Control (Option 1) traffic operations and queues. Detailed operations are attached in the Appendix E. Preliminary layout is attached in the Appendix F.

Table 9: All Way Stop Control (Option 1) Operational Analysis

| Year | Intersection | Peak Hour | Intersection Delay (1.) |  | Maximum Delay-LOS (2.) |  | Limiting Movement (3.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2020 | Sunset Dr and Hillside Dr <br> All Way Stop Controlled | AM | 6 | A | 6 | A | EBL |
|  |  | Afternoon | 4 | A | 5 | A | EBL |
|  |  | PM | 4 | A | 5 | A | EBL |
|  | Sunset Dr and Middle/High School Access <br> All Way Stop Controlled | AM | 12 | B | 22 | C | WBL |
|  |  | Afternoon | 4 | A | 7 | A | EBT |
|  |  | PM | 5 | A | 7 | A | EBT |
| 2040 | Sunset Dr and Hillside Dr All Way Stop Controlled | AM | 8 | A | 10 | B | SBR |
|  |  | Afternoon | 4 | A | 5 | A | EBL |
|  |  | PM | 4 | A | 5 | A | EBL |
|  | Sunset Dr and Middle/High School Access | AM | 13 | B | 27 | D | WBL |
|  |  | Afternoon | 5 | A | 7 | A | EBT |
|  | All Way Stop Controlled | PM | 5 | A | 7 | A | EBT |
| 1. Delay in seconds per vehicle |  |  |  |  |  |  |  |
| 2. Maximum delay and LOS on any approach and/or movement |  |  |  |  |  |  |  |

## Sunset Dr and Hillside Dr

- The intersection is anticipated to operate with an intersection LOS A in 2020 and 2040.
- Maximum southbound right queue is anticipated to be 250 feet during the AM peak hour in 2040.


## Sunset Dr and Middle/High School Access

- The intersection is anticipated to operate with an intersection LOS B or better in 2020 and 2040.
- Maximum westbound left queue is anticipated to exceed the storage capacity of the left turn lane during the AM peak hour in 2020 and 2040, causing additional queuing for southbound traffic along Sunset Dr and potentially blocking westbound through traffic.


## C. All Way Stop Control (Option 2)

All Way Stop Control (Option 2) consists of a two-way stop at the intersection of Sunset $\mathrm{Dr} /$ Hillside Dr and an all-way stop at the intersection of Sunset Dr/Middle-High School Access.
Table 10 details the All Way Stop Control (Option 2) traffic operations and queues. Detailed operations are attached in the Appendix E. Preliminary layout is attached in the Appendix F.

Table 10: All Way Stop Control (Option 2) Operational Analysis

| Year | Intersection | Peak Hour | Intersection Delay (1.) |  | Maximum Delay-LOS (2.) |  | Limiting Movement (3.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2020 | Sunset Dr and Hillside Dr <br> Two-Way Stop Controlled | AM | 4 | A | 14 | B | SBL |
|  |  | Afternoon | 2 | A | 9 | A | SBL |
|  |  | PM | 3 | A | 9 | A | SBL |
|  | Sunset Dr and Middle/High School Access All Way Stop Controlled | AM | 12 | B | 22 | C | WBL |
|  |  | Afternoon | 5 | A | 7 | A | EBT |
|  |  | PM | 5 | A | 7 | A | EBT |
| 2040 | Sunset Dr and Hillside Dr <br> Two-Way Stop Controlled | AM | 6 | A | 18 | C | SBL |
|  |  | Afternoon | 2 | A | 9 | A | SBL |
|  |  | PM | 3 | A | 9 | A | SBL |
|  | Sunset Dr and Middle/High School Access All Way Stop Controlled | AM | 14 | B | 29 | D | WBL |
|  |  | Afternoon | 5 | A | 7 | A | EBT |
|  |  | PM | 5 | A | 7 | A | EBT |

1. Delay in seconds per vehicle
2. Maximum delay and LOS on any approach and/or movement
3. Limiting Movement is the highest delay movement.

## Sunset Dr and Hillside Dr

- The intersection is anticipated to operate with an intersection LOS A in 2020 and 2040.
- Maximum southbound right queue is anticipated to be 175 feet during the AM peak hour in 2040.


## Sunset Dr and Middle/High School Access

- The intersection is anticipated to operate with an intersection LOS B or better in 2020 and 2040.
- Maximum westbound left queue is anticipated to exceed the storage capacity of the left turn lane during the AM peak hour in 2020 and 2040, causing additional queuing for southbound traffic along Sunset Dr and potentially blocking westbound through traffic.


## D. All Way Stop Control (Option 3)

All Way Stop Control (Option 3) flips the traffic control proposed for Option 2. The assumed traffic control for Option 3 is an all-way stop at the intersection of Sunset $\mathrm{Dr} / \mathrm{Hillside} \mathrm{Dr}$ and a two-way stop at the intersection of Sunset Dr/Middle-High School Access. Table 11 details the All Way Stop Control (Option 3) traffic operations and queues. Detailed operations are attached in the Appendix E. Preliminary layout is attached in the Appendix F.

Table 11: All Way Stop Control (Option 3) Operational Analysis


1. Delay in seconds per vehicle
2. Maximum delay and LOS on any approach and/or movement
3. Limiting Movement is the highest delay movement.

## Sunset Dr and Hillside Dr

- The intersection is anticipated to operate with an intersection LOS A in 2020 and 2040.
- Maximum southbound right queue is anticipated to be 200 feet during the AM peak hour in 2040.


## Sunset Dr and Middle/High School Access

- The intersection is anticipated to operate with an intersection LOS B or better in 2020 and 2040.
- Northbound left movements are anticipated to operate at LOS F during the AM peak hour in 2020 and 2040. Delays for northbound traffic are not as long as shown in the Two-Way Stop Control Option, however they may increase driver frustration and lead to additional risk taking as described previously.
- Queues are acceptable for all peak hours in 2020 and 2040 with a shifted internal roundabout location providing more stacking distance to Sunset Dr. Maximum northbound queues in 2040 are anticipated to be 225 feet during the AM peak hour as vehicles leave the site after dropping off students. The all-way stop at Sunset Dr/Hillside Dr provides some gaps in traffic to allow northbound traffic to exit the site more efficiently than the Two-Way Stop Control Option.


## E. Mini Roundabout Option

A roundabout option was analyzed for the intersection of Sunset Dr and Middle/Elementary School Access (West Mini-Roundabout) using Highway Capacity Software Version 7. Previous options retained the single point of access for the majority of traffic destined to the elementary or high schools, which leads to a congested intersection at Sunset Dr/Middle-High School Access during peak periods. This option splits the circulation entering and exiting the site into two access points to alleviate congestion. Tables $\mathbf{1 2}$ and $\mathbf{1 3}$ detail the Mini-Roundabout traffic operations and queues. Detailed operations are attached in the Appendix E. Preliminary layout is attached in the Appendix F.

Table 12: West Mini-Roundabout Operational Analysis

| Year | Options | Peak Hour | Delay by Approach (sec) |  |  |  | LOS by Approach |  |  |  | Intersection Delay (sec) | $\begin{array}{\|c\|} \hline \text { Intersection } \\ \text { LOS } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | EB | WB | NB | SB | EB | WB | NB | SB |  |  |
| 2020 | Sunset Dr and Middle/Elementary School Access <br> West Mini-Roundabout | AM | 11 | 7 | 8 | 5 | B | A | A | A | 9 | A |
|  |  | Afternoon | 3 | 4 | 4 | 0 | A | A | A | A | 4 | A |
|  |  | PM | 4 | 4 | 4 | 4 | A | A | A | A | 4 | A |
| 2040 | Sunset Dr and Middle/Elementary School Access <br> West Mini-Roundabout | AM | 15 | 8 | 10 | 5 | C | A | A | A | 12 | B |
|  |  | Afternoon | 4 | 4 | 4 | 0 | A | A | A | A | 4 | A |
|  |  | PM | 4 | 5 | 4 | 4 | A | A | A | A | 5 | A |

Table 13: West Mini-Roundabout Queues

| Year | Options | Peak Hour | Maximum Queues (ft) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | EB | WB | NB | SB |
| 2020 | Sunset Dr and Middle/Elementary School Access | AM | 100 | 50 | 50 | 25 |
|  |  | Afternoon | 25 | 25 | 25 | 0 |
|  |  | PM | 25 | 25 | 25 | 25 |
| 2040 | Sunset Dr and Middle/Elementary School Access | AM | 150 | 75 | 50 | 25 |
|  |  | Afternoon | 25 | 25 | 25 | 0 |
|  |  | PM | 25 | 25 | 25 | 25 |

## Delay:

- The west Mini-Roundabout is anticipated to operate with an intersection LOS B or better for all peak hours in 2020 and 2040.


## Queuing:

- Queues are acceptable for all peak hours in 2020 and 2040.

Roundabout option was analyzed for the intersection of Sunset Dr and Hillside Dr (east MiniRoundabout). Table 14 and 15 details the Mini-Roundabout traffic operations and queues. Detailed operations are attached in the Appendix E. Preliminary layout is attached in the Appendix F.

Table 14: East Mini-Roundabout Operational Analysis

| Year | Options | Peak Hour | Delay by Approach (sec) |  |  |  | LOS by Approach |  |  |  | Intersection Delay (sec) | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Intersection } \\ \text { LOS } \end{array} \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | EB | WB | NB | SB | EB | WB | NB | SB |  |  |
| 2020 | Sunset Dr and Hillside Dr <br> East Mini-Roundabout | AM | 9 | 6 | 7 | 8 | A | A | A | A | 8 | A |
|  |  | Afternoon | 4 | 4 | 5 | 4 | A | A | A | A | 4 | A |
|  |  | PM | 5 | 4 | 4 | 5 | A | A | A | A | 4 | A |
| 2040 | Sunset Dr and Hillside Dr <br> East Mini-Roundabout | AM | 13 | 8 | 8 | 9 | B | A | A | A | 10 | A |
|  |  | Afternoon | 4 | 4 | 5 | 5 | A | A | A | A | 5 | A |
|  |  | PM | 5 | 4 | 4 | 5 | A | A | A | A | 5 | A |

Table 15: East Mini-Roundabout Queues

| Year | Options | Peak Hour | Maximum Queues (ft) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | EB | WB | NB | SB |
| 2020 | Sunset Dr and Hillside Dr | AM | 75 | 25 | 25 | 75 |
|  |  | Afternoon | 25 | 25 | 25 | 25 |
|  | East Mini-Roundabout | PM | 25 | 25 | 25 | 25 |
| 2040 | Sunset Dr and Hillside Dr | AM | 100 | 25 | 25 | 75 |
|  |  | 25 | 25 | 25 | 25 |  |
|  | East Mini-Roundabout | PM | 25 | 25 | 25 | 50 |

## Delay:

- The east Mini-Roundabout is anticipated to operate with an intersection LOS A for all peak hours in 2020 and 2040.


## Queuing:

- Queues are acceptable for all peak hours in 2020 and 2040.


## VI. Analysis Summary

The speed analysis shows that there is a vehicle speed compliance issue along Aberdeen Ave and Sunset Dr. The $85^{\text {th }}$ percentile speed at three tested locations were all higher than the posted speed limits. This could be attributable to the rural or wide character of the roadway and surrounding land use (Aberdeen) or the wide roadway width (Sunset). Improvements related to the school site circulation changes should take these findings into consideration.

Two site circulation options were provided based on work completed by the school district:

- Option 1a
- The proposed parents drop off storage capacity at the Elementary School is undersized. Backups are anticipated to extend beyond the parking lot and onto Sunset Dr.


## - Option 1b

- The single lane roundabout is anticipated to operate at LOS F during AM and Afternoon peak hours in 2020 and 2040. Eastbound traffic largely would be unable to enter the roundabout during the AM peak due to conflicting traffic. The concentrated access to all schools shifts too much traffic to this location for this type of design to accommodate traffic during peak periods.
Based on these results, five alternative roadway and access concepts were considered to improve traffic operation characteristics, starting from Option 1 b :
- Two-Way Stop Control Option
- At the intersection of Sunset Dr and Middle/High School Access, southbound left movements are anticipated to operate at LOS F during the AM peak hour in 2040. Also, northbound left movements are anticipated to operate at LOS F during the AM peak hour in 2020 and 2040. However, if the internal roundabout were shifted further south, stacking distance can be increased to minimize the risk of this movement queuing into the roundabout. Long delays for drivers exiting the site could lead to safety issues if inadequate gaps in traffic are used to enter Sunset Dr.
- Traffic flows along Sunset Dr work well.
- Pedestrians would be provided marked and signed crossings of Sunset Dr with median refuges to aid in safe and efficient crossing. Enhanced treatments, such as RRFBs, could be considered as well.
- Internal sidewalk networks need to be considered to provide relatively direct access to the crossing and destination points.
- A traffic control officer is recommended to be present during the peak hours at the Sunset Dr and Middle/High School Access to manage traffic flows exiting the site.
- All Way Stop Control (Option 1)
- All-way stop controlled intersections do not meet volume warrants at either intersection.
- At the intersection of Sunset Dr and Middle/High School Access, maximum westbound left queue is anticipated to exceed the storage capacity of the left turn lane during the AM peak hour in 2020 and 2040. This would inhibit westbound through traffic flows for this period of time and cause additional backups for southbound Sunset Dr.
- Traffic flows from the site work well.
- Pedestrians would be provided marked crossings of Sunset Dr at the all way stop locations.
- Internal sidewalk networks need to be considered to provide relatively direct access to the crossing and destination points.
- Due to low volumes throughout most of the day, driver compliance with the all way stops may be low.
- All Way Stop Control (Option 2)
- All-way stop controlled intersections do not meet volume warrants at either intersection.
- At the intersection of Sunset Dr and Middle/High School Access, maximum westbound left queue is anticipated to exceed the storage capacity of the left turn lane during the AM peak hour in 2020 and 2040. This would inhibit westbound through traffic flows for this period of time and cause additional backups for southbound Sunset Dr.
- Traffic flows from the site work well.
- Pedestrians would be provided marked crossings of Sunset Dr at the all way stop location and marked/signed crossings with median refuge on the west leg of each intersection. Enhanced treatments could be considered as well.
- Internal sidewalk networks need to be considered to provide relatively direct access to the crossing and destination points.
- Due to low volumes throughout most of the day, driver compliance with the all way stop may be low.
- All Way Stop Control (Option 3)
- All-way stop controlled intersections do not meet volume warrants at either intersection.
- At the intersection of Sunset Dr and Middle/High School Access, northbound left movements are anticipated to operate at LOS F during the AM peak hour in 2020 and 2040. However, if the internal roundabout were shifted further south, stacking distance can be increased to minimize the risk of this movement queuing into the roundabout. Long delays for drivers exiting the site could lead to safety issues if inadequate gaps in traffic are used to enter Sunset Dr.
- Traffic flows along Sunset Dr work well.
- Pedestrians would be provided marked crossings of Sunset Dr at the all way stop location and marked/signed crossings with median refuge on the west leg of each intersection. Enhanced treatments could be considered as well.
- Internal sidewalk networks need to be considered to provide relatively direct access to the crossing and destination points.
- Due to low volumes throughout most of the day, driver compliance with the all way stop may be low, though this would likely be similar to the existing condition at Sunset Dr/Hillside Dr.
- A traffic control officer is recommended to be present during the peak hours at the Sunset Dr and Middle/High School Access to manage traffic flows exiting the site.


## - Mini-Roundabout Option

- The intersections are anticipated to operate at LOS A for all peak hours in 2020 and 2040.
- Queues are acceptable for all peak hours in 2020 and 2040.
- Pedestrians would be provided marked crossings of Sunset Dr at the mini roundabout locations. A midblock crossing between roundabouts could be an option if the position aligned with the desired routes for pedestrians.
- Internal sidewalk networks need to be considered to provide relatively direct access
to the crossing and destination points.
- Constant speed control would be provided along Sunset Dr.
- Mini-roundabouts have a smaller intersection footprint and can be constructed at a lower cost than traditional single-lane roundabouts. They can also be sized to accommodate busses without requiring tracking onto the traversable center island.


## VII. Recommendations

Both All Way Stop Control (Option 1) and (Option 2) have the possibility of causing long queues and stopped traffic related to westbound vehicles trying to enter the site. Additionally, the All Way Stop Control (Option 3) would include an all way stop at the Sunset Dr/Hillside Dr intersection that is not warranted based on traffic volumes, therefore compliance will likely be low. For these reasons, the all way stop control options are not recommended for further consideration.
We recommend the Two Way Stop Control Option as well as the Mini Roundabout Option to be further considered along with the school site improvements. Both provide for good traffic flow along Sunset Dr and can accommodate site traffic with site modifications and other provisions. Additionally, both can be designed to incorporate features to accommodate pedestrians as well as slow traffic speeds (median refuges and roundabout geometrics). The main differentiators between both of these options is how the site needs to interact with the roadway improvements to function properly as well as treatment construction cost (mini roundabout option likely more expensive as it relates to Sunset Dr). If roundabouts are pursued for inclusion in overall improvements, additional, more detailed, traffic modeling will be required to confirm lane needs and sizing. Roundabout geometry and placement along Sunset Dr and how they interact with site improvements is subject to this additional modeling during preliminary design.

## Appendix A: Traffic Volumes

Jordan/School Area Traffic Study City of Jordan, MN


Jordan/School Area Traffic Study City of Jordan, MN


Jordan/School Area Traffic Study
City of Jordan, MN
2040 Build Turning Movements


Jordan/School Area Traffic Study City of Jordan, MN

2040 No Build Peak Turning Movements
July 2019
Figure 5


## Appendix B: Crash Analysis

## Intersection Safety Screening

Intersection: Sunset Dr and Hillside Dr

Crash Data: 2015-2017.

| Crashes by Crash Severity |  | Intersection Characteristics |  |
| :---: | :---: | :---: | :---: |
| Fatal | 0 | Entering Volume | 4,800 |
| Incapacitating Injury | 0 | Traffic Control | All stop |
| Non-incapacitating Injury | 1 | Environment | Urban |
| Possible Injury | 1 | Speed Limit | 30 mph |
| Property Damage | 0 |  |  |
| Total Crashes | 2 |  |  |
| Annual crash cost $=\$ 84,333$ |  |  |  |
| Statewide Comparison |  | All Way Stop |  |
| Total Crash Rate |  | Fatal \& Serious Injury Crash Rate |  |
| Observed | 0.38 | Observed | 0.00 |
| Statewide Average | 0.34 | Statewide Average | 0.72 |
| Critical Rate | 1.10 | Critical Rate | 14.96 |
| Critical Index | 0.35 | Critical Index | 0.00 |

The observed crash rate is the number of crashes per million entering vehicles (MEV). The critical rate is a statistical comparison based on similar intersections statewide. An observed crash rate greater than the critical rate indicates that the intersection operates outside the expected, normal range. The critical index reports the magnitude of this difference.

The observed total crash rate for this period is 0.38 per MEV; this is $65 \%$ below the critical rate. Based on similar statewide intersections, an additional 4 crashes over the three years would indicate this intersection operaters outside the normal range.

The observed fatal and serious injury crash rate for this period is 0.00 per 100 MEV ; this is $100 \%$ below the critical rate. The intersection operates within the normal range.

## Intersection Safety Screening

Intersection: Aberdeen Ave and West Elementary School

Crash Data: 2015-2017.

| Crashes by Crash Severity |  |
| :--- | :--- |
| Fatal | 0 |
| Incapacitating Injury | 0 |
| Non-incapacitating Injury | 0 |
| Possible Injury | 0 |
| Property Damage | 1 |
| Total Crashes | 1 |


| Intersection Characteristics |  |
| :--- | :---: |
| Entering Volume | 2,600 |
| Traffic Control | Thru / stop |
| Environment | Urban |
| Speed Limit | 30 mph |
|  |  |
|  |  |

Annual crash cost $=\$ 2,533$

Statewide Comparison

| Total Crash Rate |  |
| :--- | :--- |
| Observed | 0.35 |
| Statewide Average | 0.19 |
| Critical Rate | 1.02 |
| Critical Index | $\mathbf{0 . 3 4}$ |

Urban Thru / Stop

| Fatal \& Serious Injury Crash Rate |  |
| :--- | :---: |
| Observed | 0.00 |
| Statewide Average | 0.36 |
| Critical Rate | 22.45 |
| Critical Index | $\mathbf{0 . 0 0}$ |

The observed crash rate is the number of crashes per million entering vehicles (MEV). The critical rate is a statistical comparison based on similar intersections statewide. An observed crash rate greater than the critical rate indicates that the intersection operates outside the expected, normal range. The critical index reports the magnitude of this difference.

The observed total crash rate for this period is 0.35 per MEV; this is $66 \%$ below the critical rate. Based on similar statewide intersections, an additional 2 crashes over the three years would indicate this intersection operaters outside the normal range.

The observed fatal and serious injury crash rate for this period is 0.00 per 100 MEV ; this is $100 \%$ below the critical rate. The intersection operates within the normal range.

## Intersection Safety Screening

Intersection: CR 66 and Aberdeen Ave

Crash Data: 2015-2017.

| Crashes by Crash Severity |  |
| :--- | :--- |
| Fatal | 0 |
| Incapacitating Injury | 0 |
| Non-incapacitating Injury | 0 |
| Possible Injury | 0 |
| Property Damage | 2 |
| Total Crashes | 2 |


| Intersection Characteristics |  |
| :--- | :---: |
| Entering Volume | 4,525 |
| Traffic Control | All stop |
| Environment | Urban |
| Speed Limit | 55 mph |
|  |  |
|  |  |

Annual crash cost $=\$ 5,067$

Statewide Comparison

| Total Crash Rate |  |
| :--- | :--- |
| Observed | 0.40 |
| Statewide Average | 0.34 |
| Critical Rate | 1.13 |
| Critical Index | $\mathbf{0 . 3 5}$ |

All Way Stop

| Fatal \& Serious Injury Crash Rate |  |
| :--- | :---: |
| Observed | 0.00 |
| Statewide Average | 0.72 |
| Critical Rate | 15.68 |
| Critical Index | $\mathbf{0 . 0 0}$ |

The observed crash rate is the number of crashes per million entering vehicles (MEV). The critical rate is a statistical comparison based on similar intersections statewide. An observed crash rate greater than the critical rate indicates that the intersection operates outside the expected, normal range. The critical index reports the magnitude of this difference.

The observed total crash rate for this period is 0.40 per MEV; this is $65 \%$ below the critical rate. Based on similar statewide intersections, an additional 4 crashes over the three years would indicate this intersection operaters outside the normal range.

The observed fatal and serious injury crash rate for this period is 0.00 per 100 MEV ; this is $100 \%$ below the critical rate. The intersection operates within the normal range.

## COLLISION DIAGRAM

LOCATION:
SUNSET DR AND HILLSIDE DR
TIME PERIOD: 01/01/2015-12/31/2017 DATE: 06/20/19 PREPARED BY: $\qquad$

|  | Year |  |  |
| :--- | :---: | :---: | :---: |
| Severity | $\mathbf{2 0 1 5}$ | $\mathbf{2 0 1 6}$ | $\mathbf{2 0 1 7}$ |
| Fatal | 0 | 0 | 0 |
| A Injury | 0 | 0 | 0 |
| B Injury | 1 | 0 | 0 |
| C Injury | 0 | 0 | 0 |
| Property Damage | 0 | 0 | 0 |
| Total Accidents | 1 | 0 | 0 |


|  | Year |  |  |
| :--- | :---: | :---: | :---: |
| Crash Type | $\mathbf{2 0 1 5}$ | $\mathbf{2 0 1 6}$ | $\mathbf{2 0 1 7}$ |
| Bicycle | 0 | 0 | 1 |
| Right Angle | 1 | 0 | 0 |
| Total Accidents | 1 | 0 | 1 |

SUNSET DR

## COLLISION DIAGRAM

LOCATION: ABERDEEN AVE AND WEST ELEMENTARY SCHOOL ACCESS
TIME PERIOD: 01/01/2015-12/31/2017 DATE: 06/20/19 PREPARED BY:

CW

## WEST ELEMENTARY SCHOOL ACCESS

## SEVERITY IDENTIFIERS

Fatal Acc.

|  | Year |  |  |
| :--- | :---: | :---: | :---: |
| Severity | $\mathbf{2 0 1 5}$ | $\mathbf{2 0 1 6}$ | $\mathbf{2 0 1 7}$ |
| Fatal | 0 | 0 | 0 |
| A Injury | 0 | 0 | 0 |
| B Injury | 0 | 0 | 0 |
| C Injury | 0 | 0 | 0 |
| Property Damage | 0 | 1 | 0 |
| Total Accidents | 0 | 1 | 0 |


|  | Year |  |  |
| :--- | :---: | :---: | :---: |
| Crash Type | $\mathbf{2 0 1 5}$ | $\mathbf{2 0 1 6}$ | $\mathbf{2 0 1 7}$ |
| Head On | 0 | 1 | 0 |
| Total Accidents | 0 | 1 | 0 |

Personal
Injury
O
Property Damage Acc.


## COLLISION DIAGRAM

LOCATION:
CR 66 AND ABERDEEN AVE
TIME PERIOD: 01/01/2015-12/31/2017 DATE: 06/20/19 PREPARED BY: CW


|  | Year |  |  |
| :--- | :---: | :---: | :---: |
| Severity | $\mathbf{2 0 1 5}$ | $\mathbf{2 0 1 6}$ | $\mathbf{2 0 1 7}$ |
| Fatal | 0 | 0 | 0 |
| A Injury | 0 | 0 | 0 |
| B Injury | 0 | 0 | 0 |
| C Injury | 0 | 0 | 0 |
| Property Damage | 2 | 0 | 0 |
| Total Accidents | 2 | 0 | 0 |


|  | Year |  |  |
| :--- | :---: | :---: | :---: |
| Crash Type | $\mathbf{2 0 1 5}$ | $\mathbf{2 0 1 6}$ | $\mathbf{2 0 1 7}$ |
| Fixed Object | 1 | 0 | 0 |
| Right Angle | 1 | 0 | 0 |
| Total Accidents | 2 | 0 | 0 |



## Appendix C: No Build Operational Analysis



Stop Conro

1. Delay in seconds per vehicle
2. Maximum delay and LOS on
Maximum delay and LOS on any approach andor movemen
Limiting Movement is the highest delay movement.
2019 No Build

| Intesection | Peak Hour | ${ }_{\text {Ebl }}^{\text {Ebl }}$ |  | ${ }^{\text {EB/T/ }}$ |  | EBL/T/R |  | ${ }_{\text {EBT }}^{\text {Exa }}$ |  | EET/R |  | wel |  | WEL/R |  | WE/T |  | WEITI/R |  | ${ }_{\text {aueue lenghs }}^{\text {Wer }}$ |  | WET/R |  | NBL |  | NE//R |  | NBL/T/R |  | NET/R |  | SEl/R |  | SBL/T |  | $\mathrm{SBLIT/R}^{\text {d }}$ |  | S8R |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Avg | Max | Avg | Max | Avg | Max |  |  | Avg | Max | Avg | Max | Avg | max | Avg | Max | Avg | 1 max | Avg | 1 max | Avg | Max | Avg | Max | Avg | $1 \max$ | Avg | 1 max |
| Hillisid D Da and High School Aceass | $\frac{\mathrm{AM}}{\text { Atemon }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{25}^{25}$ | ${ }_{\text {in }}$ |  |  |  |  |  | $\because$ |  | $\because$ | ${ }^{25}$ | ${ }_{\text {¢0 }}^{15}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| Stop Comotled | ${ }^{\text {PM }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{25}$ | ${ }^{30}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\frac{\text { Altmon }}{\substack{\text { Atem }}}$ | ¢ | - |  |  |  |  |  |  | - | (is | $\stackrel{+25}{25}$ | ¢ |  |  |  |  |  |  |  |  | ¢ | $\xrightarrow{75}$ |  | ${ }^{\frac{25}{25}}$ |  | . |  | . | ¢ | ${ }_{\substack{100 \\ 50}}$ |  |  | 25 | (185 |  |  | ${ }_{\substack{25 \\ 50}}^{\substack{\text { 25 }}}$ | ${ }^{15}$ |
| Sumet D Prand Midde sthool Aceas | $\frac{\mathrm{AM}}{\text { Atemon }}$ |  |  | $\frac{25}{0}$ | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | , |  |  |  |  | ${ }^{25}$ | ${ }^{50}$ |  |  |  |  |  |  |
| Soo Controled | $\xrightarrow{\text { Aftemon }}$ PM |  |  | $\stackrel{0}{0}$ | ${ }_{25}^{25}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{25}$ | 30 |  |  |  |  |  |  |
| Sumst D Prand Northelemenaray School Access 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{25}$ | ${ }_{50}$ |  |  |  |  |  |  |  |  | ${ }^{\frac{25}{25}}$ | ${ }_{\substack{\text { s0 } \\ 50 \\ 50}}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| Sumet D rand Nornt Elementary School Access 3 | $\frac{\text { AM }}{\text { Ammen }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\stackrel{25}{25}$ | ${ }^{25}$ |  |  |  |  |  |  |  |  | $\stackrel{\text { 25 }}{25}$ | ${ }^{\frac{25}{25}}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| Slop Controled | Atemon |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\frac{\mathrm{AM}}{\substack{\text { Ammon } \\ \mathrm{PM}}}$ |  |  |  |  |  |  |  |  | ¢ | $\underset{\substack { 75 \\ \begin{subarray}{c}{75 \\ 15{ 7 5 \\ \begin{subarray} { c } { 7 5 \\ 1 5 } } \\{ } \\{\hline}\end{subarray}}{ }$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ¢ | (in |  |  |  |  |  |  |  |  |  |  |  |  |
| Smustet r a and Timber R Ride C Ct |  |  |  | ${ }_{\text {50 }}$ | ${ }^{100}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{25}$ | ${ }^{75}$ |  |  |  |  |  |  |  |  | ${ }^{25}$ |  |  |  |  |  |  |  |
|  | ¢ |  |  | 25 | ${ }^{15}$ |  |  |  |  | 0 | ${ }^{25}$ |  |  |  |  | ${ }^{25}$ | ${ }^{15}$ |  |  |  |  | ${ }^{25}$ | $\stackrel{3}{50}$ |  |  |  |  |  |  |  |  | ${ }_{25}$ | ${ }_{50}$ |  |  |  |  |  |  |
| Suo Controled | ${ }_{\text {A }}^{\substack{\text { Afemoon } \\ \text { PM }}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{\text {25 }}^{\substack{25 \\ 50}}$ | ¢ ${ }_{\text {¢0 }}^{17}$ |  |  |  |  |  |  |  |  | - ${ }_{\text {25 }}$ | (in |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\frac{\mathrm{AM}}{\substack{\text { Ammon } \\ \text { PM }}}$ |  |  |  |  |  |  |  |  | ${ }^{\frac{25}{25}}$ | ¢ |  |  |  |  | ¢ |  |  |  |  |  |  |  |  |  | ¢ | ¢ |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {Aberden Ave and West Elemenay School Aceess }}$ | $\xrightarrow{\text { AM }}$ A |  |  |  |  |  |  |  |  |  |  |  |  | - ${ }_{\text {50 }}^{25}$ | ${ }^{\frac{75}{75}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{25}$ | 50 |  |  | ${ }_{\text {23 }}$ |  |  |  |  |  |
| Stop Comroled | ¢ |  |  |  |  |  |  |  |  |  |  |  |  | $\stackrel{\text { 25 }}{\substack{25}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{0}$ | ${ }_{\substack{25 \\ 50}}^{\substack{50}}$ |  |  |  |  |
|  | $\frac{\mathrm{AM}}{\substack{\text { Atemon } \\ \text { Pem }}}$ |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{25}^{25}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | - | (in |  |  |  |  |
| CR. 6 and Aberrem Ave | $\frac{\mathrm{AM}}{\text { Alemon }}$ |  |  |  |  | ${ }_{\text {S0 }}^{50}$ | ${ }_{\text {c }}^{75}$ |  |  |  |  |  |  |  |  |  | . | $\frac{50}{50}$ | $\frac{75}{15}$ |  |  |  |  |  |  |  |  | $\frac{75}{50}$ | $\frac{125}{15}$ |  |  |  |  |  |  | $\frac{50}{50}$ | $\frac{75}{15}$ |  |  |
|  | $\frac{\mathrm{PM}}{\mathrm{Am}}$ |  |  |  |  | 50 | ${ }^{15}$ |  |  |  |  |  |  |  |  | ${ }^{25}$ | ${ }^{25}$ | ${ }_{50}$ | ${ }^{15}$ |  |  |  |  |  |  | ${ }^{25}$ | ${ }^{50}$ | ${ }_{50}$ | $\stackrel{100}{\square}$ |  |  |  |  |  |  | ${ }_{50}^{50}$ | $\stackrel{100}{\square}$ |  |  |
| 66 and Prospect Pointe Rd | $\xrightarrow{\substack{\text { Atemoen } \\ \text { PM }}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{25}$ | - ${ }_{\text {25 }}^{50}$ |  |  |  |  |  |  |  |  | ${ }^{25}$ | ¢ |  |  |  |  |  |  |  |  |  |  |  |  |

2019 No Build


Delay in seconds per vehicle
ny yproch ndor movemen
Limiting Movement is the highest delay movement

## 2040 No Build

| mesesction | Peastour | ${ }_{\text {eal }}$ |  |  |  |  |  | $\underbrace{\text { max }}_{\text {Als } / \text { ET/R }}$ |  | ${ }_{\text {Avg }}^{\text {EgR }}$ Max |  |  |  | $\stackrel{\text { Wevele }}{\text { ave }}$ |  |  |  | $\frac{\text { weilita }}{\text { A/ }}$ |  | A |  | ${ }^{\text {ave }}$ |  |  |  |  |  | Nevtrem |  | $\stackrel{\text { sau/R }}{ }$ |  | $\frac{\text { salim }}{}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }_{\text {Avg }}$ | 1 wax |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\frac{\text { an }}{\text { Ammon }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\stackrel{\substack{25 \\ 25}}{ }$ | ${ }^{\frac{25}{25}}$ |  |  |  |  |  |  | ${ }_{25}^{25}$ | ${ }^{\frac{2}{5}}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| Smext Praned tilisid or |  | ${ }^{\text {s0 }}$ | ${ }^{100}$ |  |  |  |  | ${ }^{25}$ | ${ }^{15}$ |  |  | ${ }^{25}$ | ${ }^{15}$ |  |  |  |  |  |  | 30 | ${ }^{15}$ |  |  |  |  |  |  | 30 | ${ }^{15}$ |  |  | 50 | ${ }^{125}$ |  |  | ${ }_{50}$ |  |
| ${ }_{\text {cosem }}$ Sop cormoded | $\xrightarrow{\text { Aftemom }}$ | ${ }_{\text {so }}^{\substack{30 \\ 50}}$ | ${ }^{\frac{18}{100}}$ |  |  |  |  | ${ }_{2}^{25}$ | ${ }_{\text {si }}^{\substack{\text { si } \\ 50}}$ |  |  | ${ }_{25}^{25}$ | ${ }_{\substack{30 \\ 25}}^{\substack{\text { 2 }}}$ |  |  |  |  |  |  | ${ }_{\substack{30 \\ 30}}^{\substack{\text { co }}}$ | ${ }_{\text {l }}^{15}$ |  | ${ }^{25}$ |  |  |  |  | ${ }_{20}^{\substack{50}}$ | ${ }_{\substack{18 \\ 30}}^{\substack{\text { ci }}}$ |  |  | ${ }^{\frac{28}{25}}$ | ${ }_{\text {cois }}^{\substack{18 \\ 30}}$ |  |  | ${ }_{\substack{25 \\ 30}}^{\text {cos }}$ |  |
|  |  |  |  | ${ }^{\frac{25}{25}}$ | ${ }_{25}^{25}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{25}$ | $\stackrel{30}{30}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{3}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sopo coromeded | ${ }_{\text {atemen }}^{\text {demm }}$ | : |  |  | : |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{25}^{25}$ | ${ }^{\frac{30}{25}}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | ${ }^{2}$ | ${ }^{2}$ |  |  |  |  |  |  | ${ }^{2}$ | $\stackrel{3}{4}$ |  |  |  | . |  |  | $\stackrel{2}{2}$ | ${ }^{3}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\frac{\text { AM }}{\text { Anmon }}$ |  |  |  | . |  |  | ${ }^{30}$ | ${ }^{\frac{13}{13}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{25}^{25}$ | ${ }_{5}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| Sop Comoled | ${ }_{\text {PM }}^{\text {P/ }}$ |  |  |  |  |  |  | ${ }_{30}$ | ${ }^{15}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{2}^{25}$ | ${ }_{3}^{2}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\xrightarrow{\text { Atmem }}$ | - | - | ${ }_{\text {en }}^{\frac{25}{85}}$ | ${ }^{\frac{17}{15}}$ |  |  |  | - |  | - |  |  | . |  | . | . | - |  | ${ }^{\frac{28}{25}}$ |  | - | - | - | - | . | . |  |  | ${ }^{\frac{28}{25}}$ | ¢ |  |  |  |  |  |  |
|  | ${ }_{\text {a }}^{\text {Ammem }}$ |  |  |  |  |  |  | $\because$ | ${ }^{25}$ |  |  |  |  |  |  | ${ }^{\frac{25}{25}}$ | ${ }_{\text {in }}$ |  |  |  |  |  |  | ${ }^{25}$ | 50 |  |  |  |  |  |  |  |  |  |  |  |  |
|  | ${ }^{\mathrm{pm}}$ |  |  |  | $\because$ |  |  | $\stackrel{\circ}{\circ}$ | ${ }^{\frac{25}{50}}$ |  |  |  |  |  |  |  | $\frac{18}{10}$ |  |  |  |  |  |  | ${ }^{25}$ | ${ }^{23}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\frac{\text { Atheom }}{\text { dem }}$ |  |  |  |  |  |  | $\stackrel{\substack{25 \\ 25}}{\substack{25}}$ | 萨 |  |  |  |  |  |  | $\xrightarrow{\substack { \text { so } \\ \begin{subarray}{c}{0{ \text { so } \\ \begin{subarray} { c } { 0 } }\end{subarray}}$ | ${ }_{\text {l }}^{\substack{18 \\ 100}}$ |  |  |  |  |  |  | $\stackrel{\substack{\text { so } \\ 50}}{ }$ | ${ }^{\frac{18}{15}}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\frac{\text { AMm }}{\text { Ammom }}$ |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{\frac{30}{25}}$ | ${ }_{\text {cois }}^{15}$ |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{15}$ | 230 |  |  | ${ }_{\substack{50 \\ 25}}^{\substack{\text { 25 }}}$ | ${ }^{125}$ |  |  |  |  |
|  |  |  |  |  |  | ${ }^{25}$ | ${ }_{30}$ |  |  |  |  |  |  | ${ }_{25}^{25}$ | $\stackrel{50}{5}$ |  |  | $\stackrel{0}{0}$ | ${ }_{\text {is }}$ |  |  |  |  |  |  | 25 | $1{ }^{150}$ |  |  |  |  |  | ${ }_{2}^{25}$ | ${ }^{25}$ | 30 |  |  |
|  |  |  |  |  | $\because$ | ${ }_{25}^{25}$ | ${ }_{\text {30 }}^{\substack{30 \\ 50}}$ |  |  |  | - |  |  | \% |  | $\cdots$ | . | ${ }_{\text {25 }}^{\substack{25}}$ |  | - | . |  |  |  | - |  |  |  |  |  |  |  |  | ${ }^{25}$ | ${ }_{\substack{50 \\ 25}}^{\substack{50}}$ |  |  |
|  | ${ }_{\text {a }}^{\text {Ammom }}$ |  |  |  |  | ¢ | $\underbrace{\substack{18 \\ 18}}_{\text {\% }}$ |  |  |  | . |  |  |  |  |  |  | ${ }_{\substack{30 \\ 50}}$ | ${ }^{\frac{118}{100}}$ | . | . |  |  |  |  | ${ }_{50}^{50}$ | ${ }^{15}$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | $\stackrel{2}{ }$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sop Camoled | $\xrightarrow{\text { Altamen }}$ |  |  | ${ }^{\frac{23}{25}}$ | ${ }_{\substack{30 \\ 50}}^{\substack{\text { a }}}$ |  |  |  |  |  | ${ }^{25}$ |  |  |  |  |  | ${ }_{\text {sio }}^{50}$ |  |  |  | ${ }^{25}$ |  |  |  |  |  | ${ }_{\text {sio }}^{\substack{\text { sio }}}$ |  |  |  |  |  |  | $\stackrel{\substack{\text { so } \\ 50}}{ }$ | ${ }^{\frac{15}{100}}$ |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 204 | 40 N | No Bu | uild |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Appendix D: Provided Layouts






## Appendix E: Mitigation Operational Analysis






| HCS7 Roundabouts Report |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Information |  |  |  |  |  |  | Site Information |  |  |  |  |  |  |  |  |  |
| Analyst | CW |  |  |  |  |  | Intersection |  |  |  | Internal Site Roundabout |  |  |  |  |  |
| Agency or Co. | Bolton \& Menk |  |  |  |  |  | E/W Street Name |  |  |  |  |  |  |  |  |  |
| Date Performed | 6/13/2019 |  |  |  |  |  | N/S Street Name |  |  |  |  |  |  |  |  |  |
| Analysis Year | 2020 |  |  |  |  |  | Analysis Time Period (hrs) |  |  |  | 0.25 |  |  |  |  |  |
| Time Analyzed | Afternoon Peak |  |  |  |  |  | Peak Hour Factor |  |  |  | 1.00 |  |  |  |  |  |
| Project Description | Jordan School Area Study |  |  |  |  |  | Jurisdiction |  |  |  | Jordan, MN |  |  |  |  |  |
| Volume Adjustments and Site Characteristics |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach | EB |  |  |  | WB |  |  |  | NB |  |  |  | SB |  |  |  |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Number of Lanes (N) | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| Lane Assignment | LTR |  |  |  |  |  | LTR |  |  |  | LTR |  |  |  | LTR |  |
| Volume (V), veh/h | 0 | 159 | 0 | 0 | 0 | 0 | 0 | 35 | 0 | 0 | 109 | 0 | 0 | 35 | 17 | 53 |
| Percent Heavy Vehicles, \% | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Flow Rate (VpcE), pc/h | 0 | 164 | 0 | 0 | 0 | 0 | 0 | 36 | 0 | 0 | 112 | 0 | 0 | 36 | 18 | 55 |
| Right-Turn Bypass | None |  |  |  |
| Conflicting Lanes | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  |
| Pedestrians Crossing, p/h | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  |
| Critical and Follow-Up Headway Adjustment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | ht | Bypass |
| Critical Headway (s) |  |  |  | 4.9763 |  |  |  | 4.9763 |  |  | 4.9763 |  |  |  | 763 |  |
| Follow-Up Headway (s) |  |  |  | 2.6087 |  |  |  | 2.6087 |  |  | 2.6087 |  |  |  | 087 |  |
| Flow Computations, Capacity and v/c Ratios |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | ht | Bypass |
| Entry Flow (ve), pc/h |  |  |  | 164 |  |  |  | 36 |  |  | 112 |  |  |  | 9 |  |
| Entry Volume veh/h |  |  |  | 159 |  |  |  | 35 |  |  | 109 |  |  |  | 06 |  |
| Circulating Flow (vc), pc/h |  |  | 54 |  |  | 276 |  |  |  | 200 |  |  | 0 |  |  |  |
| Exiting Flow (vex), pc/h |  |  | 36 |  |  | 55 |  |  |  | 312 |  |  | 18 |  |  |  |
| Capacity (cpre), pc/h |  |  |  | 1306 |  |  |  | 1041 |  |  | 1125 |  |  |  | 380 |  |
| Capacity (c), veh/h |  |  |  | 1268 |  |  |  | 1011 |  |  | 1093 |  |  |  | 340 |  |
| v/c Ratio (x) |  |  |  | 0.13 |  |  |  | 0.03 |  |  | 0.10 |  |  |  | 08 |  |
| Delay and Level of Service |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  | WB |  |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  | ft | ght | Bypass |
| Lane Control Delay (d), s/veh |  |  |  | 3.9 |  |  |  | 3.9 |  |  | 4.2 |  |  |  | 3 |  |
| Lane LOS |  |  |  | A |  |  |  | A |  |  | A |  |  |  | A |  |
| 95\% Queue, veh |  |  |  | 0.4 |  |  |  | 0.1 |  |  | 0.3 |  |  |  | 0.3 |  |
| Approach Delay, s/veh |  |  | 3.9 |  |  |  | 3.9 |  |  | 4.2 |  |  | 3.3 |  |  |  |
| Approach LOS |  |  | A |  |  | A |  |  |  | A |  |  | A |  |  |  |
| Intersection Delay, s/veh \| LOS |  |  | 3.8 |  |  |  |  |  |  |  |  |  | A |  |  |  |
| Copyright © 2019 University of Florida. All Rights Reserved. HCS7 TiNM Roundabouts Version 7.4 <br>  2020_Internal Site RAB_Afternoon Peak.xro Generated: 7/2/2019 5:07:26 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| HCS7 Roundabouts Report |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Information |  |  |  |  |  |  | Site Information |  |  |  |  |  |  |  |  |  |
| Analyst | CW |  |  |  |  |  | Intersection |  |  |  | Internal Site Roundabout |  |  |  |  |  |
| Agency or Co. | Bolton \& Menk |  |  |  |  |  | E/W Street Name |  |  |  |  |  |  |  |  |  |
| Date Performed | 6/13/2019 |  |  |  |  |  | N/S Street Name |  |  |  |  |  |  |  |  |  |
| Analysis Year |  |  |  |  |  |  | Analysis Time Period (hrs) |  |  |  |  |  |  |  |  |  |
| Time Analyzed | PM Peak |  |  |  |  |  | Peak Hour Factor |  |  |  | 1.00 |  |  |  |  |  |
| Project Description | Jordan School Area Study |  |  |  |  |  | Jurisdiction |  |  |  | Jordan, MN |  |  |  |  |  |
| Volume Adjustments and Site Characteristics |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach | EB |  |  |  | WB |  |  |  | NB |  |  |  | SB |  |  |  |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Number of Lanes ( N ) | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| Lane Assignment | LTR |  |  |  |  |  | LTR |  |  |  | LTR |  |  |  | LTR |  |
| Volume (V), veh/h | 0 | 68 | 0 | 0 | 0 | 0 | 0 | 23 | 0 | 0 | 37 | 0 | 0 | 23 | 12 | 57 |
| Percent Heavy Vehicles, \% | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Flow Rate (VpCE), pc/h | 0 | 70 | 0 | 0 | 0 | 0 | 0 | 24 | 0 | 0 | 38 | 0 | 0 | 24 | 12 | 59 |
| Right-Turn Bypass | None |  |  |  |
| Conflicting Lanes | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  |
| Pedestrians Crossing, p/h | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  |
| Critical and Follow-Up Headway Adjustment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | ht | Bypass |
| Critical Headway (s) |  |  |  | 4.9763 |  |  |  | 4.9763 |  |  | 4.9763 |  |  |  | . 9763 |  |
| Follow-Up Headway (s) |  |  |  | 2.6087 |  |  |  | 2.6087 |  |  | 2.6087 |  |  |  | 6087 |  |
| Flow Computations, Capacity and v/c Ratios |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | ht | Bypass |
| Entry Flow (ve), pc/h |  |  |  | 70 |  |  |  | 24 |  |  | 38 |  |  |  | 95 |  |
| Entry Volume veh/h |  |  |  | 68 |  |  |  | 23 |  |  | 37 |  |  |  | 92 |  |
| Circulating Flow ( $\mathrm{v}_{\mathrm{c}}$ ), pc/h |  |  | 36 |  |  | $108$ |  |  |  | 94 |  |  | 0 |  |  |  |
| Exiting Flow (Vex), pc/h |  |  | 24 |  |  | 59 |  |  |  | 132 |  |  | 12 |  |  |  |
| Capacity ( cpce ), $^{\text {pc/h }}$ |  |  |  | 1330 |  |  |  | 1236 |  |  | 1254 |  |  |  | 380 |  |
| Capacity (c), veh/h |  |  |  | 1291 |  |  |  | 1200 |  |  | 1217 |  |  |  | 340 |  |
| v/c Ratio (x) |  |  |  | 0.05 |  |  |  | 0.02 |  |  | 0.03 |  |  |  | . 07 |  |
| Delay and Level of Service |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  | WB |  |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | ght | Bypass |
| Lane Control Delay (d), s/veh |  |  |  | 3.2 |  |  |  | 3.2 |  |  | 3.2 |  |  |  | 3.2 |  |
| Lane LOS |  |  |  | A |  |  |  | A |  |  | A |  |  |  | A |  |
| 95\% Queue, veh |  |  |  | 0.2 |  |  |  | 0.1 |  |  | 0.1 |  |  |  | 0.2 |  |
| Approach Delay, s/veh |  |  | 3.2 |  |  | 3.2 |  |  |  | $3.2$ |  |  | $3.2$ |  |  |  |
| Approach LOS |  |  | A |  |  | A |  |  |  | A |  |  | A |  |  |  |
| Intersection Delay, s/veh \| LOS |  |  | 3.2 |  |  |  |  |  |  | A |  |  |  |  |  |  |
| Copyright © 2019 University of Florida. All Rights Reserved. |  |  |  |  | HCS7 TiN Roundabouts Version 7.4 2020_Internal Site RAB_PM Peak.xro |  |  |  |  |  |  | $\mathrm{Ge}$ | ener | ed: 7 | 2019 | 09:38 PM |



| HCS7 Roundabouts Report |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Information |  |  |  |  |  |  | Site Information |  |  |  |  |  |  |  |  |  |
| Analyst | CW |  |  |  |  |  | Intersection |  |  |  | Internal Site Roundabout |  |  |  |  |  |
| Agency or Co. | Bolton \& Menk |  |  |  |  |  | E/W Street Name |  |  |  |  |  |  |  |  |  |
| Date Performed | 6/13/2019 |  |  |  |  |  | N/S Street Name |  |  |  |  |  |  |  |  |  |
| Analysis Year | 2040 |  |  |  |  |  | Analysis Time Period (hrs) |  |  |  | 0.25 |  |  |  |  |  |
| Time Analyzed | Afternoon Peak |  |  |  |  |  | Peak Hour Factor |  |  |  | 1.00 |  |  |  |  |  |
| Project Description | Jordan School Area Study |  |  |  |  |  | Jurisdiction |  |  |  | Jordan, MN |  |  |  |  |  |
| Volume Adjustments and Site Characteristics |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach | EB |  |  |  | WB |  |  |  | NB |  |  |  | SB |  |  |  |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Number of Lanes (N) | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| Lane Assignment | LTR |  |  |  |  |  | LTR |  |  |  | LTR |  |  |  | LTR |  |
| Volume (V), veh/h | 0 | 165 | 0 | 0 | 0 | 0 | 0 | 36 | 0 | 0 | 120 | 0 | 0 | 36 | 18 | 63 |
| Percent Heavy Vehicles, \% | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Flow Rate (VpcE), pc/h | 0 | 170 | 0 | 0 | 0 | 0 | 0 | 37 | 0 | 0 | 124 | 0 | 0 | 37 | 19 | 65 |
| Right-Turn Bypass | None |  |  |  |
| Conflicting Lanes | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  |
| Pedestrians Crossing, p/h | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  |
| Critical and Follow-Up Headway Adjustment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | ht | Bypass |
| Critical Headway (s) |  |  |  | 4.9763 |  |  |  | 4.9763 |  |  | 4.9763 |  |  |  | 763 |  |
| Follow-Up Headway (s) |  |  |  | 2.6087 |  |  |  | 2.6087 |  |  | 2.6087 |  |  |  | 087 |  |
| Flow Computations, Capacity and v/c Ratios |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | ht | Bypass |
| Entry Flow (ve), pc/h |  |  |  | 170 |  |  |  | 37 |  |  | 124 |  |  |  | 21 |  |
| Entry Volume veh/h |  |  |  | 165 |  |  |  | 36 |  |  | 120 |  |  |  | 17 |  |
| Circulating Flow ( $\mathrm{vc}_{\mathrm{c}}$, pc/h |  |  | 56 |  |  | 294 |  |  |  | 207 |  |  | 0 |  |  |  |
| Exiting Flow (vex), pc/h |  |  | 37 |  |  | 65 |  |  |  | 331 |  |  | 19 |  |  |  |
| Capacity (cpre), pc/h |  |  |  | 1303 |  |  |  | 1022 |  |  | 1117 |  |  |  | 380 |  |
| Capacity (c), veh/h |  |  |  | 1265 |  |  |  | 993 |  |  | 1085 |  |  |  | 340 |  |
| v/c Ratio (x) |  |  |  | 0.13 |  |  |  | 0.04 |  |  | 0.11 |  |  |  | 09 |  |
| Delay and Level of Service |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  | WB |  |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  | ft | ght | Bypass |
| Lane Control Delay (d), s/veh |  |  |  | 3.9 |  |  |  | 3.9 |  |  | 4.3 |  |  |  | 3.4 |  |
| Lane LOS |  |  |  | A |  |  |  | A |  |  | A |  |  |  | A |  |
| 95\% Queue, veh |  |  |  | 0.4 |  |  |  | 0.1 |  |  | 0.4 |  |  |  | 0.3 |  |
| Approach Delay, s/veh |  |  | 3.9 |  |  |  | 3.9 |  |  | 4.3 |  |  | 3.4 |  |  |  |
| Approach LOS |  |  | A |  |  | A |  |  |  | A |  |  | A |  |  |  |
| Intersection Delay, s/veh \| LOS |  |  | 3.9 |  |  |  |  |  |  |  |  |  | A |  |  |  |
|   <br> Copyright © 2019 University of Florida. All Rights Reserved. HCS7 TiNM Roundabouts Version 7.4 <br>  2040_Internal Site RAB_Afternoon Peak.xro Generated: 7/2/2019 5:13:56 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| HCS7 Roundabouts Report |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Information |  |  |  |  |  |  | Site Information |  |  |  |  |  |  |  |  |  |
| Analyst | CW |  |  |  |  |  | Intersection |  |  |  | Internal Site Roundabout |  |  |  |  |  |
| Agency or Co. | Bolton \& Menk |  |  |  |  |  | E/W Street Name |  |  |  |  |  |  |  |  |  |
| Date Performed | 6/13/2019 |  |  |  |  |  | N/S Street Name |  |  |  |  |  |  |  |  |  |
| Analysis Year |  |  |  |  |  |  | Analysis Time Period (hrs) |  |  |  |  |  |  |  |  |  |
| Time Analyzed | PM Peak |  |  |  |  |  | Peak Hour Factor |  |  |  | 1.00 |  |  |  |  |  |
| Project Description | Jordan School Area Study |  |  |  |  |  | Jurisdiction |  |  |  | Jordan, MN |  |  |  |  |  |
| Volume Adjustments and Site Characteristics |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach | EB |  |  |  | WB |  |  |  | NB |  |  |  | SB |  |  |  |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Number of Lanes ( N ) | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| Lane Assignment | LTR |  |  |  |  |  | LTR |  |  |  | LTR |  |  |  | LTR |  |
| Volume (V), veh/h | 0 | 71 | 0 | 0 | 0 | 0 | 0 | 24 | 0 | 0 | 39 | 0 | 0 | 24 | 12 | 60 |
| Percent Heavy Vehicles, \% | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Flow Rate (VpCE), pc/h | 0 | 73 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 40 | 0 | 0 | 25 | 12 | 62 |
| Right-Turn Bypass | None |  |  |  |
| Conflicting Lanes | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  |
| Pedestrians Crossing, p/h | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  |
| Critical and Follow-Up Headway Adjustment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | ht | Bypass |
| Critical Headway (s) |  |  |  | 4.9763 |  |  |  | 4.9763 |  |  | 4.9763 |  |  |  | 9763 |  |
| Follow-Up Headway (s) |  |  |  | 2.6087 |  |  |  | 2.6087 |  |  | 2.6087 |  |  |  | 0087 |  |
| Flow Computations, Capacity and v/c Ratios |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  | WB |  |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | ht | Bypass |
| Entry Flow (ve), pc/h |  |  |  | 73 |  |  |  | 25 |  |  | 40 |  |  |  | 99 |  |
| Entry Volume veh/h |  |  |  | 71 |  |  |  | 24 |  |  | 39 |  |  |  | 96 |  |
| Circulating Flow ( $\mathrm{v}_{\mathrm{c}}$ ), pc/h |  |  | 37 |  |  | $113$ |  |  |  | 98 |  |  | 0 |  |  |  |
| Exiting Flow (Vex), pc/h |  |  | 25 |  |  | 62 |  |  |  | 138 |  |  | 12 |  |  |  |
| Capacity ( cpce ), $^{\text {pc/h }}$ |  |  |  | 1329 |  |  |  | 1230 |  |  | 1249 |  |  |  | 380 |  |
| Capacity (c), veh/h |  |  |  | 1290 |  |  |  | 1194 |  |  | 1212 |  |  |  | 340 |  |
| v/c Ratio (x) |  |  |  | 0.05 |  |  |  | 0.02 |  |  | 0.03 |  |  |  | . 07 |  |
| Delay and Level of Service |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  | WB |  |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | ght | Bypass |
| Lane Control Delay (d), s/veh |  |  |  | 3.2 |  |  |  | 3.2 |  |  | 3.2 |  |  |  | 3.3 |  |
| Lane LOS |  |  |  | A |  |  |  | A |  |  | A |  |  |  | A |  |
| 95\% Queue, veh |  |  |  | 0.2 |  |  |  | 0.1 |  |  | 0.1 |  |  |  | 0.2 |  |
| Approach Delay, s/veh |  |  | 3.2 |  |  | $3.2$ |  |  |  | $3.2$ |  |  | $3.3$ |  |  |  |
| Approach LOS |  |  | A |  |  | A |  |  |  | A |  |  | A |  |  |  |
| Intersection Delay, s/veh \| LOS |  |  | 3.2 |  |  |  |  |  |  | A |  |  |  |  |  |  |
| Copyright © 2019 University of Florida. All Rights Reserved. |  |  |  |  | HCS7 TiN Roundabouts Version 7.4 2040_Internal Site RAB_PM Peak.xr |  |  |  |  |  |  | $\overline{\mathrm{G}}$ | ener | d: 7/ | 2019 | 15:04 PM |


| HCS7 Roundabouts Report |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Information |  |  |  |  |  |  | Site Information |  |  |  |  |  |  |  |  |  |
| Analyst | CW |  |  |  |  |  | Intersection |  |  |  | Proposed Sunset Dr \& High/Middle School Access Roundabout |  |  |  |  |  |
| Agency or Co. | Bolton \& Menk |  |  |  |  |  | E/W Street Name |  |  |  | Sunset Dr |  |  |  |  |  |
| Date Performed | 6/13/2019 |  |  |  |  |  | N/S Street Name |  |  |  | High/Middle School Access |  |  |  |  |  |
| Analysis Year | 2020 |  |  |  |  |  | Analysis Time Period (hrs) |  |  |  | 0.25 |  |  |  |  |  |
| Time Analyzed | AM Peak |  |  |  |  |  | Peak Hour Factor |  |  |  | 0.40 |  |  |  |  |  |
| Project Description | Jordan School Area Study |  |  |  |  |  | Jurisdiction |  |  |  | Jordan, MN |  |  |  |  |  |
| Volume Adjustments and Site Characteristics |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | EB |  |  |  | WB |  |  |  | NB |  |  |  | SB |  |  |  |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Number of Lanes (N) | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| Lane Assignment | LTR |  |  |  |  |  | LTR |  |  |  | LTR |  |  |  | LTR |  |
| Volume (V), veh/h | 0 | 6 | 120 | 202 | 0 | 358 | 46 | 16 | 0 | 85 | 0 | 234 | 0 | 5 | 0 | 3 |
| Percent Heavy Vehicles, \% | 3 | 3 | 4 | 6 | 3 | 3 | 3 | 3 | 3 | 12 | 3 | 18 | 3 | 3 | 3 | 3 |
| Flow Rate (VPCE), pc/h | 0 | 15 | 312 | 533 | 0 | 922 | 118 | 41 | 0 | 237 | 0 | 687 | 0 | 13 | 0 | 8 |
| Right-Turn Bypass | None |  |  |  | None |  |  |  | None |  |  |  |  |  |  |  |
| Conflicting Lanes | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  |
| Pedestrians Crossing, p/h | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  |
| Critical and Follow-Up Headway Adjustment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | ft | Right | Bypass | Left | Right | Bypass |  |  | ght | Bypass |
| Critical Headway (s) |  |  |  | 4.9763 |  |  |  | 4.9763 |  |  | 4.9763 |  |  |  | 763 |  |
| Follow-Up Headway (s) |  |  |  | 2.6087 |  |  |  | 2.6087 |  |  | 2.6087 |  |  |  | 087 |  |
| Flow Computations, Capacity and v/c Ratios |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | ft | Right | Bypass | Left | Right | Bypass |  |  | ight | Bypass |
| Entry Flow (ve), pc/h |  |  |  | 860 |  |  |  | 1081 |  |  | 924 |  |  |  | 1 |  |
| Entry Volume veh/h |  |  |  | 819 |  |  |  | 1050 |  |  | 797 |  |  |  | 0 |  |
| Circulating Flow (vc), pc/h |  |  | 935 |  |  | $252$ |  |  |  | 340 |  |  | 1277 |  |  |  |
| Exiting Flow ( $\mathrm{vex}^{\text {) }}$, $\mathrm{pc} / \mathrm{h}$ |  |  | $1012$ |  |  | $363$ |  |  |  | 56 |  |  | 1455 |  |  |  |
| Capacity ( $\mathrm{cpce}^{\text {) , pc/h }}$ |  |  |  | 532 |  |  |  | 1067 |  |  | 976 |  |  |  | 75 |  |
| Capacity (c), veh/h |  |  |  | 507 |  |  |  | 1036 |  |  | 842 |  |  |  | 64 |  |
| v/c Ratio (x) |  |  |  | 1.62 |  |  |  | 1.01 |  |  | 0.95 |  |  |  | .06 |  |
| Delay and Level of Service |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | ight | Bypass |
| Lane Control Delay (d), s/veh |  |  |  | 307.4 |  |  |  | 51.3 |  |  | 41.4 |  |  |  | . 7 |  |
| Lane LOS |  |  |  | F |  |  |  | F |  |  | E |  |  |  | B |  |
| 95\% Queue, veh |  |  |  | 45.8 |  |  |  | 20.7 |  |  | 14.7 |  |  |  | . 2 |  |
| Approach Delay, s/veh |  |  | 307.4 |  |  |  |  | 51.3 |  |  | 41.4 |  |  |  | . 7 |  |
| Approach LOS |  |  | F |  |  |  |  | F |  |  | E |  |  |  | B |  |
| Intersection Delay, s/veh \| LOS |  |  | 126.2 |  |  |  |  |  |  | F |  |  |  |  |  |  |


| HCS7 Roundabouts Report |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Information |  |  |  |  |  |  | Site Information |  |  |  |  |  |  |  |  |  |
| Analyst | CW |  |  |  |  |  | Intersection |  |  |  | Proposed Sunset Dr \& High/Middle School Access Roundabout |  |  |  |  |  |
| Agency or Co. | Bolton \& Menk |  |  |  |  |  | E/W Street Name |  |  |  | Sunset Dr |  |  |  |  |  |
| Date Performed | 6/13/2019 |  |  |  |  |  | N/S Street Name |  |  |  | High/Middle School Access |  |  |  |  |  |
| Analysis Year | 2020 |  |  |  |  |  | Analysis Time Period (hrs) |  |  |  | 0.25 |  |  |  |  |  |
| Time Analyzed | Afternoon Peak |  |  |  |  |  | Peak Hour Factor |  |  |  | 0.33 |  |  |  |  |  |
| Project Description | Jordan School Area Study |  |  |  |  |  | Jurisdiction |  |  |  | Jordan, MN |  |  |  |  |  |
| Volume Adjustments and Site Characteristics |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | EB |  |  |  | WB |  |  |  | NB |  |  |  | SB |  |  |  |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Number of Lanes ( N ) | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| Lane Assignment | LTR |  |  |  |  |  | LTR |  |  |  | LTR |  |  |  | LTR |  |
| Volume (V), veh/h | 0 | 5 | 61 | 40 | 0 | 77 | 104 | 8 | 0 | 60 | 0 | 261 | 0 | 0 | 0 | 0 |
| Percent Heavy Vehicles, \% | 3 | 3 | 9 | 3 | 3 | 8 | 9 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Flow Rate (VPCE), pc/h | 0 | 16 | 202 | 125 | 0 | 252 | 343 | 25 | 0 | 187 | 0 | 815 | 0 | 0 | 0 | 0 |
| Right-Turn Bypass | None |  |  |  |
| Conflicting Lanes | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  |
| Pedestrians Crossing, p/h | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  |
| Critical and Follow-Up Headway Adjustment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | Right | Bypass |
| Critical Headway (s) |  |  |  | 4.9763 |  |  |  | 4.9763 |  |  | 4.9763 |  |  |  | 4.9763 |  |
| Follow-Up Headway (s) |  |  |  | 2.6087 |  |  |  | 2.6087 |  |  | 2.6087 |  |  |  | 2.6087 |  |
| Flow Computations, Capacity and v/c Ratios |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| $\square$ |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | Right | Bypass |
| Entry Flow (ve), pc/h |  |  |  | 343 |  |  |  | 620 | - |  | 1002 |  |  |  | 0 |  |
| Entry Volume veh/h |  |  |  | 322 |  |  |  | 572 |  |  | 973 |  |  |  | 0 |  |
| Circulating Flow ( $\mathrm{v}_{\mathrm{c}}$, $\mathrm{pc} / \mathrm{h}$ |  |  | 252 |  |  | $203$ |  |  |  | $218$ |  |  | 782 |  |  |  |
| Exiting Flow (vex), pc/h |  |  | 1017 |  |  | 530 |  |  |  | 41 |  |  | 377 |  |  |  |
| Capacity (Cpce), pc/h |  |  |  | 1067 |  |  |  | 1122 |  |  | 1105 |  |  |  | 622 |  |
| Capacity (c), veh/h |  |  |  | 1001 |  |  |  | 1036 |  |  | 1073 |  |  |  | 603 |  |
| v/c Ratio (x) |  |  |  | 0.32 |  |  |  | 0.55 |  |  | 0.91 |  |  |  | 0.00 |  |
| Delay and Level of Service |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | Right | Bypass |
| Lane Control Delay (d), s/veh |  |  |  | 6.9 |  |  |  | 10.4 |  |  | 29.5 |  |  |  | 6.0 |  |
| Lane LOS |  |  |  | A |  |  |  | B |  |  | D |  |  |  | A |  |
| 95\% Queue, veh |  |  |  | 1.4 |  |  |  | 3.5 |  |  | 13.9 |  |  |  | 0.0 |  |
| Approach Delay, s/veh |  |  | 6.9 |  |  | 10.4 |  |  |  | 29.5 |  |  |  |  |  |  |
| Approach LOS |  |  | A |  |  | B |  |  |  | D |  |  |  |  |  |  |
| Intersection Delay, s/veh \| LOS |  |  | 19.7 |  |  |  |  |  |  | C |  |  |  |  |  |  |


| HCS7 Roundabouts Report |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Information |  |  |  |  |  |  | Site Information |  |  |  |  |  |  |  |  |  |
| Analyst | CW |  |  |  |  |  | Intersection |  |  |  | Proposed Sunset Dr \& High/Middle School Access Roundabout |  |  |  |  |  |
| Agency or Co. | Bolton \& Menk |  |  |  |  |  | E/W Street Name |  |  |  | Sunset Dr |  |  |  |  |  |
| Date Performed | 6/13/2019 |  |  |  |  |  | N/S Street Name |  |  |  | High/Middle School Access |  |  |  |  |  |
| Analysis Year | 2019 |  |  |  |  |  | Analysis Time Period (hrs) |  |  |  | 0.25 |  |  |  |  |  |
| Time Analyzed | PM Peak |  |  |  |  |  | Peak Hour Factor |  |  |  | 0.33 |  |  |  |  |  |
| Project Description | Jordan School Area Study |  |  |  |  |  | Jurisdiction |  |  |  | Jordan, MN |  |  |  |  |  |
| Volume Adjustments and Site Characteristics |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | EB |  |  |  | WB |  |  |  | NB |  |  |  | SB |  |  |  |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Number of Lanes ( N ) | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| Lane Assignment | LTR |  |  |  |  |  | LTR |  |  |  | LTR |  |  |  | LTR |  |
| Volume (V), veh/h | 0 | 3 | 149 | 38 | 0 | 58 | 154 | 11 | 0 | 36 | 0 | 98 | 0 | 16 | 0 | 6 |
| Percent Heavy Vehicles, \% | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Flow Rate (VPCE), pc/h | 0 | 9 | 465 | 119 | 0 | 181 | 481 | 34 | 0 | 112 | 0 | 306 | 0 | 50 | 0 | 19 |
| Right-Turn Bypass | None |  |  |  |
| Conflicting Lanes | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  |
| Pedestrians Crossing, p/h | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  |
| Critical and Follow-Up Headway Adjustment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | ft | Right | Bypass | Left | Right | Bypass |  |  | ght | Bypass |
| Critical Headway (s) |  |  |  | 4.9763 |  |  |  | 4.9763 |  |  | 4.9763 |  |  |  | 763 |  |
| Follow-Up Headway (s) |  |  |  | 2.6087 |  |  |  | 2.6087 |  |  | 2.6087 |  |  |  | 087 |  |
| Flow Computations, Capacity and v/c Ratios |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | ft | Right | Bypass | Left | Right | Bypass |  |  | ght | Bypass |
| Entry Flow (ve), pc/h |  |  |  | 593 |  |  |  | 696 |  |  | 418 |  |  |  | 9 |  |
| Entry Volume veh/h |  |  |  | 576 |  |  |  | 676 |  |  | 406 |  |  |  | 7 |  |
| Circulating Flow ( $\mathrm{v}_{\mathrm{c}}$, $\mathrm{pc} / \mathrm{h}$ |  |  | 231 |  |  | $121$ |  |  |  | $524$ |  |  | 774 |  |  |  |
| Exiting Flow ( $\mathrm{vex}^{\text {e }}$ ) $\mathrm{pc} / \mathrm{h}$ |  |  | 821 |  |  | 612 |  |  |  | 43 |  |  | 300 |  |  |  |
| Capacity (cpre), pc/h |  |  |  | 1090 |  |  |  | 1220 |  |  | 809 |  |  |  | 27 |  |
| Capacity (c), veh/h |  |  |  | 1059 |  |  |  | 1184 |  |  | 785 |  |  |  | 08 |  |
| v/c Ratio (x) |  |  |  | 0.54 |  |  |  | 0.57 |  |  | 0.52 |  |  |  | 11 |  |
| Delay and Level of Service |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | ght | Bypass |
| Lane Control Delay (d), s/veh |  |  |  | 10.1 |  |  |  | 9.9 |  |  | 12.0 |  |  |  | . 2 |  |
| Lane LOS |  |  |  | B |  |  |  | A |  |  | B |  |  |  | A |  |
| 95\% Queue, veh |  |  |  | 3.4 |  |  |  | 3.8 |  |  | 3.0 |  |  |  | 0.4 |  |
| Approach Delay, s/veh |  |  | 10.1 |  |  |  |  | 9.9 |  |  | 12.0 |  |  |  | 2 |  |
| Approach LOS |  |  | B |  |  |  |  | A |  |  | B |  |  |  | A |  |
| Intersection Delay, s/veh \| LOS |  |  | 10.3 |  |  |  |  |  |  | B |  |  |  |  |  |  |



| HCS7 Roundabouts Report |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Information |  |  |  |  |  |  | Site Information |  |  |  |  |  |  |  |  |  |
| Analyst | CW |  |  |  |  |  | Intersection |  |  |  | Proposed Sunset Dr \& High/Middle School Access Roundabout |  |  |  |  |  |
| Agency or Co. | Bolton \& Menk |  |  |  |  |  | E/W Street Name |  |  |  | Sunset Dr |  |  |  |  |  |
| Date Performed | 6/13/2019 |  |  |  |  |  | N/S Street Name |  |  |  | High/Middle School Access |  |  |  |  |  |
| Analysis Year | 2020 |  |  |  |  |  | Analysis Time Period (hrs) |  |  |  | 0.25 |  |  |  |  |  |
| Time Analyzed | Afternoon Peak |  |  |  |  |  | Peak Hour Factor |  |  |  | 0.33 |  |  |  |  |  |
| Project Description | Jordan School Area Study |  |  |  |  |  | Jurisdiction |  |  |  | Jordan, MN |  |  |  |  |  |
| Volume Adjustments and Site Characteristics |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | EB |  |  |  | WB |  |  |  | NB |  |  |  | SB |  |  |  |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Number of Lanes (N) | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| Lane Assignment | LTR |  |  |  |  |  | LTR |  |  |  | LTR |  |  |  | LTR |  |
| Volume (V), veh/h | 0 | 5 | 70 | 40 | 0 | 77 | 123 | 8 | 0 | 60 | 0 | 261 | 0 | 0 | 0 | 0 |
| Percent Heavy Vehicles, \% | 3 | 3 | 9 | 3 | 3 | 8 | 9 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Flow Rate (VPCE), pc/h | 0 | 16 | 232 | 125 | 0 | 252 | 406 | 25 | 0 | 187 | 0 | 815 | 0 | 0 | 0 | 0 |
| Right-Turn Bypass | None |  |  |  |
| Conflicting Lanes | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  |
| Pedestrians Crossing, p/h | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  |
| Critical and Follow-Up Headway Adjustment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | ght | Bypass |
| Critical Headway (s) |  |  |  | 4.9763 |  |  |  | 4.9763 |  |  | 4.9763 |  |  |  | 763 |  |
| Follow-Up Headway (s) |  |  |  | 2.6087 |  |  |  | 2.6087 |  |  | 2.6087 |  |  |  | 087 |  |
| Flow Computations, Capacity and v/c Ratios |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | ight | Bypass |
| Entry Flow (ve), pc/h |  |  |  | 373 |  |  |  | 683 |  |  | 1002 |  |  |  | 0 |  |
| Entry Volume veh/h |  |  |  | 349 |  |  |  | 630 |  |  | 973 |  |  |  | 0 |  |
| Circulating Flow (vc), pc/h |  |  | 252 |  |  | 203 |  |  |  | 248 |  |  | 845 |  |  |  |
| Exiting Flow (vex), pc/h |  |  | 1047 |  |  | 593 |  |  |  | 41 |  |  | 377 |  |  |  |
| Capacity (cpec), pc/h |  |  |  | 1067 |  |  |  | 1122 |  |  | 1072 |  |  |  | 83 |  |
| Capacity (c), veh/h |  |  |  | 1000 |  |  |  | 1035 |  |  | 1040 |  |  |  | 56 |  |
| v/c Ratio (x) |  |  |  | 0.35 |  |  |  | 0.61 |  |  | 0.94 |  |  |  | . 00 |  |
| Delay and Level of Service |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | ght | Bypass |
| Lane Control Delay (d), s/veh |  |  |  | 7.3 |  |  |  | 11.8 |  |  | 34.4 |  |  |  | 6.4 |  |
| Lane LOS |  |  |  | A |  |  |  | B |  |  | D |  |  |  | A |  |
| 95\% Queue, veh |  |  |  | 1.6 |  |  |  | 4.3 |  |  | 15.3 |  |  |  | 0 |  |
| Approach Delay, s/veh |  |  | 7.3 |  |  |  |  | 11.8 |  |  | 34.4 |  |  |  |  |  |
| Approach LOS |  |  | A |  |  |  |  | B |  |  | D |  |  |  |  |  |
| Intersection Delay, s/veh \| LOS |  |  | 22.2 |  |  |  |  |  |  | C |  |  |  |  |  |  |




| menesection | Peaktour |  |  |  |  |  |  |  |  |  |  |  |  |  | $\xrightarrow{\text { Wealtr }}$ |  |  |  | Amil wa |  |  |  |  |  |  |  |  |  | $\stackrel{\max _{\text {max }}^{\text {max }} \text { ( }}{ }$ | Ave |  | $\underbrace{\text { Sul/ }}_{\text {Avg }}$ Max |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | $\div$ |  | $\div$ |  |  |  | ${ }^{\frac{28}{0}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Smext Pramililico dr |  | ${ }_{5}^{50}$ | $\frac{150}{15}$ |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{25}$ | ${ }_{5}^{50}$ |  |  |  |  |  |  |  |  |  |  |  | ${ }_{\substack{25 \\ 30}}$ | ${ }^{\frac{18}{15}}$ |  |  |  |  |  |  |  | ${ }_{\text {cts }}^{\substack{5}}$ |
| nomono seoc comoled | ${ }_{\text {mam }}^{\text {mm }}$ | ${ }^{\frac{25}{25}}$ | ${ }^{106}$ |  |  |  |  | ${ }^{25}$ | so | ${ }^{18}$ |  |  |  |  |  |  | ${ }^{25}$ | $\stackrel{5}{50}$ |  |  |  |  |  | ${ }_{15}$ | ${ }^{200}$ |  |  | ${ }^{15}$ |  | ${ }^{50}$ |  |  |  |  |  | ${ }^{25}$ | 30 |  | ? |
| Thenowoseoc comonde | ${ }_{\text {Antaman }}^{\text {and }}$ | ${ }^{\frac{25}{25}}$ | ${ }^{\frac{25}{25}}$ |  |  |  |  | : | ${ }^{\text {is }}$ | ${ }^{\frac{23}{25}}$ | ${ }_{\substack{30 \\ 50}}^{\substack{\text { co }}}$ |  |  |  |  |  |  |  | ${ }^{\frac{25}{25}}$ | ${ }_{\substack{18 \\ 10}}^{\substack{\text { a }}}$ |  |  |  |  |  |  |  | ¢ | ${ }^{\frac{12}{13}}$ |  |  |  |  |  |  | ${ }^{\text {is }}$ | 30 |  |  |
|  |  |  |  |  | - |  |  |  |  |  |  |  |  | - |  | . |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\underbrace{\frac{23}{25}}$ |  |  |  |  |  |  |  |
|  |  |  |  |  | . | ${ }^{23}$ | ${ }^{\frac{25}{25}}$ |  |  |  |  |  |  | So |  |  |  |  |  |  | $\frac{30}{50}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sopomomond | $\xrightarrow{\text { Stimomom }}$ |  |  |  |  | ${ }_{25}$ | ${ }_{3}^{20}$ |  |  |  |  |  |  | ${ }_{\substack{30 \\ 30}}^{\substack{100 \\ 100}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{2}^{25}$ | ${ }_{\substack { \text { sio } \\ \begin{subarray}{c}{0{ \text { sio } \\ \begin{subarray} { c } { 0 } } \\{\hline}\end{subarray}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | ${ }_{\text {and }}^{\text {anmmom }}$ |  |  |  |  |  |  |  |  |  |  |  |  | - | ${ }_{\substack{23 \\ 25}}^{\substack{23}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{\frac{23}{25}}$ |  |  |  |
|  |  |  |  | ${ }_{\text {so }}^{\substack{\text { so }}}$ | ${ }_{\text {cis }}{ }_{50}$ |  |  |  |  |  |  |  |  |  | ${ }_{\substack{30 \\ 50}}^{\substack{\text { cos }}}$ |  |  |  |  |  |  |  |  |  |  | ${ }_{\substack{15^{8} \\ 80}}$ | ${ }^{\frac{125}{15}}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\frac{\mathrm{pm}}{\mathrm{Mm}}$ |  |  | $\stackrel{0}{0}$ |  |  |  |  |  |  |  |  |  |  | s0 |  |  |  |  |  |  |  |  |  |  | ${ }^{25}$ |  |  |  |  |  |  |  |  |  |  | ${ }^{100}$ |  |  |
|  | $\xrightarrow{\text { Antamom }}$ |  |  |  | . | - |  | . |  |  |  |  |  |  |  |  |  |  |  |  |  | - | : | $\because$ |  | ${ }_{25}^{25}$ | so | : |  |  |  |  |  |  |  |  |  |  |  |
| 2020 Two-Way Stop Control |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



| Intersection | Peak Hour | EBL/T |  |  |  | E8T/R |  | EBR |  | WBL |  | WE//T |  | WELT/T/ |  |  | Queu | nghs |  |  |  |  |  |  |  |  |  | SBL/R |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | EBL/T/R |  |  |  | WBT/R | NBL/R |  | NBL/T |  | NBL/T/R |  | NBR |  | SBL |  |  | SBL/T/R |  | S8R |  |  |  |
| Hillside Dr and High School Access Stop Controlled |  | Avg | Max | Avg | Max | Avg | Max |  |  | Avg | Max |  |  | Avg | Max |  | Avg | Max | Avg |  |
|  | $\frac{\mathrm{AM}}{\text { Aftroon }}$ | $\div$ | . | $\div$ | . | 0 | ${ }^{25}$ | $\div$ |  |  |  |  | . |  |  | ${ }^{25}$ | 50 25 25 | $\div$ | . | $\div$ | . | 25 50 50 | 75 75 75 | $\div$ | . | $\div$ | . | - | . | - |  |  | . |  | $\div$ | . | $\div$ | : |
|  | ${ }_{\text {¢M }}$ |  |  | . |  |  | , |  |  |  |  | 0 | 25 |  |  |  |  | 25 | 50 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sunset Dr and Hillside Dr Two-Way Stop Controlled | ${ }_{\text {AM }}$ | 75 | ${ }^{150}$ | . | - | - | - | - | - | - | . |  | - | - | . | ${ }^{25}$ | 75 |  |  | - | - | - | - | - | . | 50 | ${ }^{150}$ | - | . |  | - | . | ${ }^{75}$ | ${ }^{200}$ |
|  | ${ }_{\text {Afermon }}^{\text {PM }}$ | ${ }^{25}$ | $\begin{array}{r}75 \\ \hline 100 \\ \hline\end{array}$ | - | - | . | . | - |  |  |  | . | . | . | . | 25 <br> 25 | $\stackrel{25}{25}$ | . | . |  |  | , | . |  |  | 50 50 50 | $\begin{array}{r}15 \\ 100 \\ \hline\end{array}$ | - | . |  |  |  | 50 <br> 15 | ${ }^{100}$ |
| Sunset Dr and Middle/High School Access Two-Way Stop Controlled | AM | 25 | 50 | - |  |  | - | 25 | 75 | 100 | ${ }^{350}$ | - |  |  | - | ${ }^{25}$ | ${ }^{275}$ | - | - | 175 | 375 |  | - | ${ }^{175}$ | 400 | S0 |  |  |  |  | 25 | 50 |  |  |
|  | Affermon | 0 | ${ }^{25}$ | . | - | - | . | 0 | 25 | 25 | 50 | . | . | - | - |  |  | - | . | 50 | 100 | - | - | 50 | ${ }^{150}$ | . |  | . | - |  |  |  | - | . |
|  | $\frac{\mathrm{PM}}{\text { AM }}$ | $\stackrel{25}{ }$ | ${ }_{50}^{50}$ | . | - | . | $\cdots$ | . | . | 25 | $\stackrel{75}{ }$ | . | . | . | . | . | . | . | . | $\stackrel{25}{ }$ | $\stackrel{75}{ }$ | . | . | ${ }_{50}^{50}$ | 15 | . | . | 25 | 50 |  | 25 | ${ }^{2}$ | - | , |
| Sunset Dr and Timber Ridge Ct Stop Controlled | Afternoon |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{25}$ | 25 |  |  |  |  |  |
|  | PM | - | . | - | - |  |  | . | . | - | . |  |  | - |  |  |  |  |  | - | . | . | . |  |  |  |  | 25 | 50 |  | - | - | - |  |
| Sunset Dr and Aberdeen Ave Stop Controlled | ${ }_{\text {Aftermonn }}^{\text {AM }}$ | . | : | : | : | 50 <br> 25 | 75 50 50 | . | . | . | . | 50 <br> 50 | ${ }_{75}^{75}$ | . | . | . | . | 75 50 50 | 125 <br> 75 | . | . | . | . | . | . | . |  | . | . |  | . | . | . | . |
|  | ${ }_{\text {PM }}^{\text {And }}$ | - | - | - | - | ${ }_{2}^{25}$ | ${ }_{75}$ | - |  |  |  | ${ }_{50}$ | ${ }^{100}$ |  |  |  |  | ${ }_{50}$ | ${ }_{7}$ | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Aberdeen Ave and West Elementary School Access <br> Stop Controlled | ${ }_{\text {AM }}$ | - | - | - | - | - | - | - | - | - | . | - | - | - | . | . | - | - | - | - | . | . | . | . | - | . |  | - | . |  | . | . | - | . |
|  | ${ }_{\text {AM }}$ | . | . | - | - | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | - | . |  | . | . | - | . |
|  | AM | - | - | ${ }^{25}$ | 50 | - |  | - |  |  |  |  | - | 25 | 75 |  |  |  |  |  |  | 25 | 25 | - |  |  |  |  |  |  | 25 | 50 | - |  |
| Aberdeen Ave and Ridge St Stop Controlled | ${ }_{\text {A }}^{\text {Ateroon }}$ PM | - | - | ${ }_{25}^{25}$ | 50 50 50 | - | . | - | - | - | - | - | - | ${ }_{25}^{25}$ | 50 50 | - | - | - | - | - | - | ${ }_{25}^{25}$ | 50 50 50 | . | - |  |  |  | - |  | ${ }_{25}^{25}$ | 25 50 | - |  |
| CR 66 and Aberdeen Ave Stop Controlled | ${ }_{\text {AM }}^{\text {Am }}$ | - | - | 50 50 50 | ${ }^{100}$ | . | . | - | . | - | . | - | - | ${ }_{50}$ | ${ }^{75}$ | - | - | . | - | - | - | ${ }^{75}$ | ${ }^{150}$ | . | - | - |  | - | . |  | ${ }^{75}$ | 125 | - | - |
|  | ${ }_{\substack{\text { Aferoon } \\ \text { PM }}}$ | - | : | 50 50 50 | 75 100 | : | : | : |  |  |  |  | : | 50 <br> 75 | 100 125 | : | - | - | - | - | - | 50 50 50 | 75 <br> 125 <br> 1 | . | . |  |  | - | - |  | 50 <br> 75 | 100 100 10 | - |  |
| CR 66 and Prospect Pointe Rd Stop Controlled | ${ }_{\text {AM }}$ |  |  |  |  |  |  |  |  | 25 | 50 |  |  |  |  |  |  |  |  |  |  | 25 | 75 |  |  |  |  |  |  |  | 50 | 75 |  |  |
|  | $\underset{\substack{\text { Aferoon } \\ \text { PM }}}{ }$ | ${ }_{25}^{25}$ | ${ }_{25}^{25}$ | - | - | - | $:$ | - | - | 25 25 | 50 <br> 50 | $\bigcirc$ | - | - | - | - | . |  | . | - | : | ${ }_{25}^{25}$ | 50 75 | : | $\because$ | . |  | - | - |  | 25 50 | 50 75 | - | - |
| 2040 Two-Way Stop Control |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |






2040 All Way Stop Control - 1


| mersection | Peaktour | ${ }^{\text {ang mit }}$ |  |  |  | ${ }_{\text {AIE }}^{\text {Eif/ }}$ |  | ${ }_{\text {Asg }}^{\text {Etar }}$ Max |  |  |  |  |  |  | $\xrightarrow{\text { Wealtr }}$ |  |  |  | Amil wa |  |  |  |  |  |  |  |  | $\stackrel{\max _{\text {max }}^{\text {max }} \text { ( }}{ }$ | Ave |  |  |  | ${ }_{\text {Avg }}^{\text {spal }}$ mex |  |  |  | ${ }_{\text {Ass }}^{\text {spr }}$ Max |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | ${ }_{\text {and }}^{\text {Anman }}$ |  |  |  |  |  |  | : |  | $\div$ |  |  |  | - |  |  |  |  |  |  |  | (ta |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | ${ }_{\text {S }}^{50}$ | ${ }^{\frac{15}{100}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{28}$ | ${ }^{\frac{50}{25}}$ |  |  |  |  |  |  |  |  |  |  | ${ }_{\text {- }}^{\substack{\text { sio }}}$ | $\stackrel{100}{15}$ |  |  |  |  |  |  |  | , |
| nomono seoc comothed | $\frac{\mathrm{pm}}{\mathrm{Mm}}$ |  | ${ }_{\text {lis }}^{10}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{30}$ | ${ }_{100}$ |  |  | $\stackrel{3}{50}$ |  |  |  |  |  |  |  | ${ }^{25}$ | so |  |  |
|  |  | ¢ | ${ }^{\frac{18}{100}}$ |  |  |  |  | ${ }_{2}^{25}$ | ${ }^{\frac{17}{15}}$ | ${ }_{\substack{30 \\ 50}}^{\substack{\text { co }}}$ | ${ }^{\text {lis }}$ |  |  |  |  |  | ¢ | ${ }^{\frac{18}{15}}$ | ${ }^{\frac{25}{25}}$ | ${ }_{\text {cois }}^{\substack{18 \\ 10}}$ |  |  |  |  |  |  | ¢ | ${ }^{10}{ }^{12}$ |  |  |  |  |  |  | ${ }^{\text {is }}$ | 30 |  |  |
|  |  |  |  |  | - |  |  |  |  |  |  |  |  | - |  | . |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\underbrace{\frac{23}{25}}$ |  |  |  |  |  |  |  |
|  | mom |  |  |  | : | ${ }^{\frac{25}{25}}$ | ${ }_{50}^{30}$ |  |  |  |  |  |  | So |  |  |  |  |  |  | ${ }_{\text {\% }}^{15}$ | (is |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\frac{\mathrm{pm}}{\mathrm{Mm}}$ |  |  |  |  | ${ }_{25}$ | $\stackrel{28}{\stackrel{28}{4}}$ |  |  |  |  |  |  | ${ }_{30}{ }^{\circ}$ |  |  |  |  |  |  |  | \% |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | . |  |  |  |  |  |  | ${ }^{\frac{25}{25}}$ | ${ }^{5}{ }^{\text {50, }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{25}$ | ${ }^{50}$ |  |  |  |  |
|  | ${ }_{\text {a }}^{\text {and }}$ |  |  |  |  |  |  |  |  |  |  |  |  | - | ${ }_{\substack{23 \\ 25}}^{\substack{23}}$ | ${ }_{\substack{\text { cis }}}^{\substack{\text { cin }}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{\substack{25 \\ 25}}^{\substack{25}}$ | ${ }_{\substack { \text { in } \\ \begin{subarray}{c}{50{ \text { in } \\ \begin{subarray} { c } { 5 0 } } \\{\hline 10}\end{subarray}}$ |  |  |
|  | ${ }^{\text {a }}$ |  |  | ${ }_{\text {so }}^{\substack{\text { so }}}$ | ${ }_{\text {, }}^{15}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{\substack{15 \\ 50}}^{\substack{\text { cid }}}$ | ${ }^{\frac{125}{15}}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\frac{\mathrm{pm}}{\mathrm{mm}}$ |  |  | ${ }_{5}$ |  |  |  |  |  |  |  |  |  | ${ }_{\text {so }}$ | ${ }_{50}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{100}$ |  |  |
|  | $\xrightarrow{\text { Natmom }}$ |  |  |  | $\bigcirc$ | - |  | . |  |  |  |  |  |  |  |  |  |  |  |  |  | : | : |  | ${ }^{23}$ | ${ }^{\frac{50}{50}}$ | : |  |  |  |  |  |  |  |  |  |  |  |
| 2020 All Way Stop Control - 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



2040 All Way Stop Control - 2

| Intersection | ak Hour | EBU/T |  | EEB/T/R |  | ${ }_{\text {EBT/R }}$ |  | E8R |  | wbl |  | WEL/R |  | Wel/T |  | WEIT/R |  | WBT/R ${ }_{\text {dueue elenghs }}^{\text {NE//R }}$ |  |  |  | NBL/T |  | NBLT/R |  | NBR |  | ${ }_{\text {sal }}$ |  | SEL/R |  | SBl/ |  | ${ }_{\text {SEL/T/R }}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Avg | Max | ${ }_{\text {Avg }}$ | Max | Avg | Max | Avg | 1 max | Avg | Max | Avg | ${ }_{\text {Max }}$ | Avg | $\operatorname{Max}^{2}$ | Avg | Max |
| Hillisid D Drand Higis Sctool Access | $\frac{\mathrm{AM}}{\text { Aftmon }}$ |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{25}$ |  |  |  |  |  | - ${ }_{5}^{25}$ | ${ }^{50}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Stoo Conroled | ${ }_{\text {Aldemon }}^{\text {PM }}$ |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{0}$ | ${ }_{25}$ |  |  |  |  | ${ }_{25}$ | ${ }_{\substack{50 \\ 50}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sumest D and fillisid Dr |  | ¢ ${ }_{\text {30 }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ¢ | ¢ |  |  |  |  |  |  |  |  | ¢ | ¢ |  |  |  |  |  |  | ¢ | ${ }^{75}$ |
|  | ${ }_{-}^{\text {PM }}$ | ${ }_{\text {¢ }}^{\frac{25}{5}}$ | ${ }^{\text {13 }}$ |  |  |  |  | ${ }^{25}$ | ${ }_{150}^{150}$ | ${ }_{\text {L }}^{125}$ | ${ }_{\text {300 }}^{30}$ |  |  |  |  |  |  | - ${ }^{25}$ | 250 <br> 85 <br> 85 |  |  | ${ }_{50}^{50}$ | ${ }^{100}$ |  |  | ${ }^{50}$ | ${ }^{150}$ |  |  |  |  |  |  | ${ }^{25}$ | ${ }_{50}$ |  |  |
| All Wav Sop Controled | ${ }_{\text {Aftemon }}^{\text {PM }}$ | ${ }_{\substack{50 \\ 50}}$ | ${ }^{7} 100$ |  |  |  |  | ${ }^{25}$ | ${ }^{75}$ | ${ }^{50}$ | ¢ |  |  |  |  |  |  | - | - ${ }^{15}$ |  |  | - ${ }_{25}^{25}$ | ${ }_{\substack{75 \\ 50}}$ |  |  | $\stackrel{\substack{\text { s0 } \\ 50}}{ }$ | ${ }^{125}$ |  |  |  |  |  |  | $\stackrel{25}{25}$ | ${ }_{50}^{50}$ |  |  |
| Sumel P a and Timber Ridge Ct | ${ }_{\text {anden }}^{\text {Antemon }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{25}$ | ${ }_{\substack{\text { s0 } \\ 50}}$ |  |  |  |  |  |  |
| Sumstop Prand Cobterten Ave | $\frac{\mathrm{PM}}{\text { AM }}$ | - |  | , | , | ${ }^{25}$ | ${ }_{50}^{50}$ |  |  |  |  |  |  | ${ }_{50}^{50}$ | ${ }^{75}$ |  |  |  | - | ${ }^{75}$ | ${ }^{125}$ |  |  |  |  |  |  |  |  | ${ }^{25}$ | ${ }_{50}$ |  |  |  |  |  |  |
|  | ${ }_{\text {Aftroon }}^{\text {PM }}$ |  |  |  | $\cdots$ | ${ }^{25}$ | ${ }^{\frac{50}{50}}$ |  |  |  |  |  |  | ${ }^{\frac{50}{50}}$ | ${ }^{100}$ |  |  |  | . | ${ }_{\text {¢0 }}^{\substack{\text { S0 }}}$ | ${ }^{\frac{15}{15}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Aberiden Ave and West Elemenayy School Aceess | $\frac{\mathrm{AM}}{\text { Atemon }}$ |  |  |  |  |  |  |  |  |  |  | ${ }^{25}$ | ¢ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\frac{25}{0}$ | ¢ |  |  |  |  |
|  | $\frac{\text { PM }}{\text { AM }}$ |  |  | ${ }_{50}$ | ${ }_{7}{ }^{15}$ |  |  |  |  |  |  |  |  |  |  | ${ }^{25}$ | ${ }^{15}$ |  |  |  |  |  |  | ${ }^{25}$ | ${ }^{25}$ |  |  |  |  |  |  |  |  | ${ }^{25}$ | ${ }_{50}$ |  |  |
|  | $\frac{\text { Afemon }}{\text { dem }}$ |  |  | - $\begin{gathered}\text { 25 } \\ 50\end{gathered}$ |  |  |  |  |  |  |  |  |  |  |  | $\stackrel{25}{25}$ | ¢ $\frac{50}{50}$ |  |  |  |  |  |  | $\stackrel{25}{25}$ | - $\begin{aligned} & \text { 50 } \\ & 75 \\ & 75\end{aligned}$ |  |  |  |  |  |  |  |  | ${ }^{\frac{25}{25}}$ | ¢ |  |  |
| CR66 and Abercten Ave | $\frac{\mathrm{AM}}{\text { Aftroon }}$ |  |  |  | 100 <br> 15 <br> 15 |  |  |  |  |  |  |  |  |  |  | ¢ | 75 <br> 100 <br> 1 |  |  |  |  |  |  | -75 <br> 50 <br> 0 | $\frac{125}{100}$ |  |  |  |  |  |  |  |  | $\frac{50}{50}$ <br> $\frac{30}{50}$ | 100 <br> 100 <br> 100 |  |  |
|  | ¢ | $\because$ | $\div$ | $\stackrel{50}{5}$ | $\stackrel{100}{1}$ |  |  |  |  | - |  |  |  | ${ }^{25}$ | ${ }^{25}$ | ${ }_{15}{ }^{10}$ | $\stackrel{100}{125}$ | - | $\div$ |  |  | - | - | $\stackrel{\substack{30 \\ \text { S0 } \\ 25}}{ }$ | $\stackrel{\substack{100 \\ \hline 100 \\ 50}}{ }$ | , |  | , |  |  |  |  |  | ¢ | - 11000 |  |  |
| ${ }^{\text {CR } 66 \text { and Prosect Poince Rd }}$ Sup Corroled |  | ${ }^{0}$ | ${ }^{25}$ |  |  |  |  |  |  |  |  |  |  | $\frac{25}{25}$ | - ${ }_{\text {25 }}^{50}$ |  |  |  |  |  |  |  |  | $\xrightarrow{25}$ | $\xrightarrow{25}$ |  |  |  |  |  |  |  |  | ${ }^{25}$ | $\frac{30}{35}$ |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



| Intesection | Peak Hour | E8/T |  | E81/T/R |  | ${ }_{\text {Avg }}^{\text {E8T/R }}$ |  | ${ }_{\text {EBR }}$ |  |  |  | WE/R |  | WE/T |  | WESITR |  | WET/R |  | ${ }_{\text {Queue enght }}^{\text {Net }}$ |  | NEL/R |  | ${ }_{\text {Avg }}^{\text {NE/T }}$ Max |  | NBLT/R |  | NBR |  | ${ }_{\text {sal }}$ |  | SBl/R |  | S8/T |  | ${ }_{\text {SBLTTR }}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }_{\text {Avg }}$ | Max | Avg | Max |  |  | ${ }_{\text {Avg }}$ | Max | ${ }_{\text {Avg }}$ | ${ }_{\text {max }}$ | Avg | max | Avg | Max | Avg | Max | Avg | Max | Avg |  | ${ }_{\text {Avg }}^{\text {Avg }}$ | $\mathrm{Max}^{25}$ |  |  | Avg | 1 Max | Avg | Max | ${ }^{\text {Avg }}$ | Max | ${ }^{\text {Avg }}$ | ( Max | Avg | ( Max | Avg | Max | Avg |  |
| Hillside Dr and High School Access Stop Controlled | $\frac{\mathrm{AM}}{\substack{\text { Afmoon } \\ \text { PM }}}$ |  |  |  |  |  |  |  |  |  |  |  |  | i <br> 0 <br> 0 | ${ }^{\frac{23}{25}}{ }^{25}$ |  |  |  |  |  |  | + ${ }^{\text {225 }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sumet Dramat illidide Dr | $\frac{\mathrm{AM}}{\text { Altemon }}$ | - | $\frac{230}{100}$ |  |  |  |  |  |  |  |  |  |  |  |  |  | . | $\stackrel{50}{50}$ | $\frac{150}{15}$ |  |  |  |  |  |  |  |  |  |  | ${ }^{25}$ | ${ }^{75}$ |  |  |  |  |  |  | ${ }^{75}$ | ${ }^{12}$ |
| Altwor soop Conroled | ${ }_{\text {Afemoon }}^{\text {PM }}$ | ${ }_{\text {¢ }}^{\substack{50 \\ 15}}$ | 100 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ¢ | ${ }^{75}$ |  |  |  |  |  |  |  |  |  |  | ¢ | ${ }^{75}$ |  |  |  |  |  |  | ${ }_{\substack{\text { s0 } \\ 50}}$ |  |
|  | $\frac{\mathrm{AM}}{\substack{\text { Ammon } \\ \text { pen }}}$ | ${ }^{25}$ | ( $\begin{gathered}\text { 25 } \\ 50 \\ 20 \\ 25\end{gathered}$ |  | . |  |  | ${ }^{25}$ | ${ }_{\substack{\text { ¢ }}}^{\substack{25}}$ | - | 200 <br> 80 <br> 50 |  |  |  |  |  |  | $\bigcirc$ | ${ }^{25}$ | ${ }^{25}$ | ${ }_{7}^{15}$ |  |  | ${ }_{100}$ | ${ }^{200}$ |  |  | ¢ |  |  |  |  |  |  |  | ${ }^{25}$ | ${ }_{50}$ |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | . |  | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{25}$ | ${ }_{50}$ |  |  |  |  |  |  |
| Sopo Comroled | ${ }_{\text {Afemoon }}^{\text {PM }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{25}{ }^{25}$ | ${ }_{\substack{\text { s0 } \\ 50}}$ |  |  |  |  |  |  |
| Sunset Dr and Aberdeen Ave | ${ }_{\text {Afemon }}^{\text {Am }}$ |  |  |  |  | $\stackrel{\text { 25 }}{\substack{25 \\ 25}}$ | ¢ |  |  |  |  |  |  | ¢ | $\xrightarrow{\frac{1}{100}}$ |  |  |  |  |  |  | ¢ | $\stackrel{\substack{100 \\ 15 \\ 15}}{ }$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | ${ }_{\text {am }}^{\text {Ammon }}$ |  |  |  |  |  |  |  |  |  |  | ${ }^{25}$ | ${ }_{\text {¢ }}^{\frac{30}{50}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 25 | S0 |  |  |  |  |
| Soor Contoled | $\xrightarrow{\text { Altimoon }}$ PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\frac{\mathrm{AM}}{\substack{\text { Ammon } \\ \text { PM }}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | - | ¢ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\stackrel{\text { 25 }}{ }$ | (in |  |  |
| CR 66 and Aterctere Ave | $\frac{\mathrm{AM}}{\text { Altmoon }}$ |  |  | $\frac{50}{50}$ | 15 <br> 7 <br> 7 |  |  |  |  |  |  |  |  |  |  | $\frac{50}{50}$ <br> 50 | ${ }^{75}$ |  |  |  |  |  |  |  |  | ${ }_{\substack{75 \\ 50}}$ | $\frac{100}{75}$ |  | . |  |  |  |  |  |  | ¢ |  |  |  |
| Sop Controled | ${ }_{\text {¢ }}^{\text {PM }}$ |  |  | $\stackrel{30}{50}$ | ${ }^{15}$ |  |  |  |  |  |  |  |  |  |  | ${ }_{50}$ | ${ }^{15}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{50}$ | ${ }^{100}$ |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\stackrel{25}{25}$ |  |  |  |  |  |  |  |  |  |  |  | ${ }^{25}$ | ¢0 |  |  |  |  |  |  |  |  |  |  |  |  |



| Intersection | Peak Hour | E8L/T |  | EEI/T/R |  | EET/R |  | EвR |  | wel |  | WE/LR |  | Wel/T |  | WEl/T/R |  | WET/R ${ }^{\text {Queue }}$ |  | NEL/R |  | NE/T |  | NBLT/R |  | NBR |  | S81 |  | S8//R |  | S8/T |  | Sel/T/R |  | S8R |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Avg | max | ${ }^{\text {Avg }}$ | Max |  |  | Avg | max |  |  | Avg | Max | Avg | $\underline{\max }$ | Avg | max |
| Hillisid D Prand Higib School Access | $\frac{\mathrm{AM}}{\text { Afteon }}$ |  | : |  |  |  |  |  |  |  |  |  |  | ${ }_{2}^{25}$ | ${ }^{50}{ }^{55}$ |  |  |  |  |  | $\div$ | ${ }_{50}^{25}$ | ${ }^{\frac{50}{15}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\stackrel{\text { PM }}{ }$ | $\because$ |  | . |  |  |  |  |  | . |  | $\cdots$ |  | 0 | ${ }_{2}{ }^{25}$ | $\because$ |  |  |  | ${ }_{2}^{25}$ | ${ }_{50}$ |  |  |  | $\cdots$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  | ${ }_{\text {Atemon }}^{\text {Am }}$ | ${ }_{\text {l }}^{15}$ | ${ }^{200}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ¢ | ${ }^{100}$ |  |  |  |  |  |  |  |  | ${ }_{\substack{50 \\ 50}}$ | ${ }^{125}$ |  |  |  |  |  |  |  | ${ }^{175}$ |
|  | $\frac{\mathrm{PM}}{\text { AM }}$ | ${ }^{15}$ | ${ }^{\text {100 }}$ |  |  |  |  | ${ }^{25}$ | ${ }^{50}$ |  |  |  |  |  |  |  |  | - ${ }_{\text {¢0 }}^{25}$ | -100 |  |  |  |  |  |  | ${ }^{75}$ |  | 50 | ${ }^{25}$ |  |  |  |  | 25 | ${ }^{50}$ | ${ }_{50}$ | 100 |
|  | $\frac{\text { Afenoon }}{\text { PM }}$ | ${ }^{25}$ | $\stackrel{25}{25}$ |  |  |  |  | 0 | $\stackrel{3}{25}$ | ${ }^{25}$ | ${ }_{\substack{50 \\ 50}}^{\substack{25 \\ 50}}$ |  |  |  |  |  |  |  |  |  |  | $\stackrel{\text { s0 }}{25}$ | - |  |  | ¢ | $\xrightarrow{\substack{\text { 250 } \\ 100}}$ |  |  |  |  |  |  | + | ${ }_{\substack { 30 \\ \begin{subarray}{c}{50{ 3 0 \\ \begin{subarray} { c } { 5 0 } } \\{50}\end{subarray}}$ |  |  |
|  | $\frac{\mathrm{AM}}{\text { Atemonn }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{25}$ | $\frac{50}{50}$ |  |  |  |  |  |  |
|  | $\xrightarrow{\text { Afemoon }}$ PM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }^{25}$ | ${ }_{50}^{50}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  | ${ }_{\text {30 }}^{50}$ |  |  |  |  |  |  |  | ${ }^{100}$ |  |  |  |  | ${ }_{50}$ | ${ }^{100}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | ${ }_{\text {ctem }}^{\text {PM }}$ |  |  | - |  | - ${ }_{25}^{25}$ | ${ }_{50}$ |  |  |  |  |  | $\stackrel{\square}{50}$ | ${ }_{5}^{50}$ | ${ }^{100}$ |  |  |  |  | ${ }_{\text {co }}^{\substack{50 \\ 50}}$ | ${ }^{15}$ |  |  | $\cdot$ | $\div$ |  |  |  | . | . |  |  |  | - |  |  |  |
| Aberdeen Ave and West Elementary School Access Stop Controlled | $\frac{\mathrm{AM}}{\substack{\text { Atemon } \\ \text { PM }}}$ | . | - | . |  |  |  |  |  |  |  | $\stackrel{\text { 25 }}{25}$ | ${ }_{5}^{50}$ |  | - | . | . | . | . | . | . | . |  |  |  | . |  | . |  | . | . | $\stackrel{25}{0}$ | ${ }_{25}{ }^{55}$ | . |  |  |  |
| Aberdeen Ave and Ridge St Stop Controlled | $\frac{\mathrm{AM}}{\text { Atemon }}$ |  |  | ${ }^{50}$ | ${ }_{50}^{75}$ |  |  |  |  |  |  |  |  |  |  | ${ }_{2}^{25}$ | $\stackrel{75}{15}$ |  |  |  |  |  |  | ${ }_{25}^{25}$ | ${ }_{2}{ }^{25}$ |  |  |  |  |  |  |  |  | ${ }^{25}$ | ${ }^{50}$ |  |  |
|  | ${ }_{\text {Afemon }}^{\text {PM }}$ |  |  | ${ }_{\text {¢ }}^{\substack{25 \\ \hline 20}}$ | ${ }_{\substack{50 \\ \hline 15}}^{\substack{15}}$ |  |  |  |  |  |  |  |  |  |  |  | ¢s0 <br> 50 <br> 100 |  |  |  |  |  |  | - ${ }_{\text {25 }}^{25}$ |  |  |  |  |  |  |  |  |  | - ${ }_{\text {25 }}^{25}$ | ¢ |  |  |
| CR 66 and Aberdeen Ave Stop Controlled | ${ }_{\substack{\text { Afemon } \\ \text { PM }}}^{\text {And }}$ |  |  | (in | ${ }_{\substack{100 \\ 75 \\ 75}}$ |  |  |  |  |  |  |  |  |  |  | ¢ | - 11000 |  |  |  | . |  |  | ( | 175 <br> 100 <br> 100 |  |  |  |  |  |  |  |  | ¢ | ${ }_{\substack{100 \\ 75}}$ |  |  |
|  | ${ }^{\text {PM }}$ |  |  |  |  |  |  |  |  |  |  |  | . | ${ }^{25}$ | ${ }_{25}$ |  |  |  |  |  |  |  |  | ${ }^{\frac{30}{25}}$ | $\stackrel{100}{50}$ |  |  |  |  |  |  |  |  | ¢ | 100 <br> ${ }_{15}^{75}$ |  |  |
|  | $\xrightarrow{\text { Aferomon }}$ | ${ }^{25}$ | ${ }_{2}^{25}$ |  |  |  |  |  |  |  |  |  |  | ${ }_{25}^{25}$ | ${ }_{\substack{25 \\ 50}}$ |  |  |  |  |  |  |  |  | $\stackrel{25}{25}$ | $\stackrel{25}{50}$ |  |  |  |  |  |  |  |  | ${ }^{25}$ | 50 <br> 75 |  |  |
| 2040 All Way Stop Control - 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| HCS7 Roundabouts Report |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Information |  |  |  |  |  |  | Site Information |  |  |  |  |  |  |  |  |  |
| Analyst | CW |  |  |  |  |  | Intersection |  |  |  | West Mini-Roundabout |  |  |  |  |  |
| Agency or Co. | Bolton \& Menk |  |  |  |  |  | E/W Street Name |  |  |  | Sunset Dr |  |  |  |  |  |
| Date Performed | 6/13/2019 |  |  |  |  |  | N/S Street Name |  |  |  | High/Middle School Access |  |  |  |  |  |
| Analysis Year | 2020 |  |  |  |  |  | Analysis Time Period (hrs) |  |  |  | 0.25 |  |  |  |  |  |
| Time Analyzed | AM Peak |  |  |  |  |  | Peak Hour Factor |  |  |  | 0.60 |  |  |  |  |  |
| Project Description | Jordan School Area Study |  |  |  |  |  | Jurisdiction |  |  |  | Jordan, MN |  |  |  |  |  |
| Volume Adjustments and Site Characteristics |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach | EB |  |  |  | WB |  |  |  | NB |  |  |  | SB |  |  |  |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Number of Lanes ( N ) | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| Lane Assignment | LTR |  |  |  |  |  | LTR |  |  |  | LTR |  |  |  | LTR |  |
| Volume (V), veh/h | 0 | 6 | 194 | 116 | 0 | 149 | 69 | 15 | 0 | 58 | 0 | 118 | 0 | 5 | 0 | 3 |
| Percent Heavy Vehicles, \% | 3 | 5 | 7 | 11 | 3 | 7 | 6 | 3 | 3 | 27 | 13 | 0 | 3 | 3 | 5 | 6 |
| Flow Rate (VpCE), pc/h | 0 | 10 | 346 | 215 | 0 | 266 | 122 | 26 | 0 | 123 | 0 | 197 | 0 | 9 | 0 | 5 |
| Right-Turn Bypass | None |  |  |  |
| Conflicting Lanes | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  |
| Pedestrians Crossing, p/h | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  |
| Critical and Follow-Up Headway Adjustment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | Right | Bypass |
| Critical Headway (s) |  |  |  | 4.9763 |  |  |  | 4.9763 |  |  | 4.9763 |  |  |  | 4.9763 |  |
| Follow-Up Headway (s) |  |  |  | 2.6087 |  |  |  | 2.6087 |  |  | 2.6087 |  |  |  | 2.6087 |  |
| Flow Computations, Capacity and v/c Ratios |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | Right | Bypass |
| Entry Flow (ve), pc/h |  |  |  | 571 |  |  |  | 414 |  |  | 320 |  |  |  | 14 |  |
| Entry Volume veh/h |  |  |  | 527 |  |  |  | 389 |  |  | 294 |  |  |  | 13 |  |
| Circulating Flow ( $\mathrm{v}_{\mathrm{c}}$, $\mathrm{pc} / \mathrm{h}$ |  |  | $275$ |  |  | $133$ |  |  |  | $365$ |  |  | 511 |  |  |  |
| Exiting Flow (Vex), pc/h |  |  | 552 |  |  | 250 |  |  |  | 36 |  |  | 481 |  |  |  |
| Capacity ( cpce ), $^{\text {pc/h }}$ |  |  |  | 1042 |  |  |  | 1205 |  |  | 951 |  |  |  | 819 |  |
| Capacity (c), veh/h |  |  |  | 961 |  |  |  | 1132 |  |  | 873 |  |  |  | 788 |  |
| v/c Ratio (x) |  |  |  | 0.55 |  |  |  | 0.34 |  |  | 0.34 |  |  |  | 0.02 |  |
| Delay and Level of Service |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  | WB |  |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | Right | Bypass |
| Lane Control Delay (d), s/veh |  |  |  | 10.9 |  |  |  | 6.6 |  |  | 7.9 |  |  |  | 4.7 |  |
| Lane LOS |  |  |  | B |  |  |  | A |  |  | A |  |  |  | A |  |
| 95\% Queue, veh |  |  |  | 3.4 |  |  |  | 1.5 |  |  | 1.5 |  |  |  | 0.1 |  |
| Approach Delay, s/veh |  |  | $10.9$ |  |  | $6.6$ |  |  |  | $7.9$ |  |  | 4.7 |  |  |  |
| Approach LOS |  |  | B |  |  | A |  |  |  | A |  |  | A |  |  |  |
| Intersection Delay, s/veh \| LOS |  |  | 8.7 |  |  |  |  |  |  | A |  |  |  |  |  |  |
| Copyright © 2019 University of Florida. All Rights Reserved. |  |  |  |  | HCS7 TiN Roundabouts Version 7.4 2020_West Mini-RAB_AM Peak.xro |  |  |  |  | Generated: 6/28/2019 11:06:12 AM |  |  |  |  |  |  |






| HCS7 Roundabouts Report |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Information |  |  |  |  |  |  | Site Information |  |  |  |  |  |  |  |  |  |
| Analyst | CW |  |  |  |  |  | Intersection |  |  |  | West Mini-Roundabout |  |  |  |  |  |
| Agency or Co. | Bolton \& Menk |  |  |  |  |  | E/W Street Name |  |  |  | Sunset Dr |  |  |  |  |  |
| Date Performed | 6/13/2019 |  |  |  |  |  | N/S Street Name |  |  |  | High/Middle School Access |  |  |  |  |  |
| Analysis Year | 2040 |  |  |  |  |  | Analysis Time Period (hrs) |  |  |  | 0.25 |  |  |  |  |  |
| Time Analyzed | PM Peak |  |  |  |  |  | Peak Hour Factor |  |  |  | 1.00 |  |  |  |  |  |
| Project Description | Jordan School Area Study |  |  |  |  |  | Jurisdiction |  |  |  | Jordan, MN |  |  |  |  |  |
| Volume Adjustments and Site Characteristics |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach | EB |  |  |  | WB |  |  |  | NB |  |  |  | SB |  |  |  |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Number of Lanes (N) | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| Lane Assignment | LTR |  |  |  |  |  | LTR |  |  |  | LTR |  |  |  | LTR |  |
| Volume (V), veh/h | 0 | 3 | 209 | 25 | 0 | 35 | 258 | 11 | 0 | 24 | 0 | 45 | 0 | 16 | 0 | 6 |
| Percent Heavy Vehicles, \% | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Flow Rate (vpce), pc/h | 0 | 3 | 215 | 26 | 0 | 36 | 266 | 11 | 0 | 25 | 0 | 46 | 0 | 16 | 0 | 6 |
| Right-Turn Bypass | None |  |  |  | None |  |  |  |  |  |  |  |  |  |  |  |
| Conflicting Lanes | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  |
| Pedestrians Crossing, $\mathrm{p} / \mathrm{h}$ | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  |
| Critical and Follow-Up Headway Adjustment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | Left | Right | Bypass | Left | Right | Bypass | Left |  | Right | Bypass |
| Critical Headway (s) |  |  |  | 4.9763 |  |  |  | 4.9763 |  |  | 4.9763 |  |  |  | 763 |  |
| Follow-Up Headway (s) |  |  |  | 2.6087 |  |  |  | 2.6087 |  |  | 2.6087 |  |  |  | 87 |  |
| Flow Computations, Capacity and v/c Ratios |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  | Left |  | Bypass |
| Entry Flow (ve), pc/h |  |  |  | 244 |  |  |  | 313 |  |  | 71 |  |  |  | 22 |  |
| Entry Volume veh/h |  |  |  | 237 |  |  |  | 304 |  |  | 69 |  |  |  | 21 |  |
| Circulating Flow (vc), pc/h |  |  | 52 |  |  | $28$ |  |  |  | 234 |  |  | 327 |  |  |  |
| Exiting Flow (vex), pc/h |  |  | 277 |  |  | 297 |  |  |  | 14 |  |  | 62 |  |  |  |
| Capacity (cpee), pc/h |  |  |  | 1309 |  |  |  | 1341 |  |  | 1087 |  |  |  | 89 |  |
| Capacity (c), veh/h |  |  |  | 1271 |  |  |  | 1302 |  |  | 1055 |  |  |  | 60 |  |
| v/c Ratio (x) |  |  |  | 0.19 |  |  |  | 0.23 |  |  | 0.07 |  |  |  | . 02 |  |
| Delay and Level of Service |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  | WB |  |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  | Left | ht | Bypass |
| Lane Control Delay (d), s/veh |  |  |  | 4.4 |  |  |  | 4.8 |  |  | 4.0 |  |  |  | 3.9 |  |
| Lane LOS |  |  |  | A |  |  |  | A |  |  | A |  |  |  | A |  |
| 95\% Queue, veh |  |  |  | 0.7 |  |  |  | 0.9 |  |  | 0.2 |  |  |  | 0.1 |  |
| Approach Delay, s/veh |  |  | 4.4 |  |  | 4.8 |  |  |  | 4.0 |  |  | 3.9 |  |  |  |
| Approach LOS |  |  | A |  |  | A |  |  |  | A |  |  | A |  |  |  |
| Intersection Delay, s/veh \| LOS |  |  | 4.5 |  |  |  |  |  |  | A |  |  |  |  |  |  |
| Copyright © 2019 University of Florida. All Rights Reserved. |  |  |  |  | HCS7 4 TM Roundabouts Version 7.4 2040_West Mini-RAB_PM Peak.xro |  |  |  |  | Generated: 7/22/2019 8:12:27 AM |  |  |  |  |  |  |


| HCS7 Roundabouts Report |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Information |  |  |  |  |  |  | Site Information |  |  |  |  |  |  |  |  |  |
| Analyst | CW |  |  |  |  |  | Intersection |  |  |  | East Mini-Roundabout |  |  |  |  |  |
| Agency or Co. | Bolton \& Menk |  |  |  |  |  | E/W Street Name |  |  |  | Sunset Dr |  |  |  |  |  |
| Date Performed | 6/13/2019 |  |  |  |  |  | N/S Street Name |  |  |  | Hillside Dr |  |  |  |  |  |
| Analysis Year | 2020 |  |  |  |  |  | Analysis Time Period (hrs) |  |  |  | 0.25 |  |  |  |  |  |
| Time Analyzed | AM Peak |  |  |  |  |  | Peak Hour Factor |  |  |  | 0.74 |  |  |  |  |  |
| Project Description | Jordan School Area Study |  |  |  |  |  | Jurisdiction |  |  |  | Jordan, MN |  |  |  |  |  |
| Volume Adjustments and Site Characteristics |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach | EB |  |  |  | WB |  |  |  | NB |  |  |  | SB |  |  |  |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Number of Lanes (N) | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| Lane Assignment | LTR |  |  |  |  |  | LTR |  |  |  | LTR |  |  |  | LTR |  |
| Volume (V), veh/h | 0 | 213 | 30 | 74 | 0 | 42 | 18 | 64 | 0 | 23 | 80 | 23 | 0 | 37 | 149 | 188 |
| Percent Heavy Vehicles, \% | 3 | 5 | 7 | 11 | 3 | 7 | 6 | 0 | 3 | 27 | 13 | 0 | 3 | 3 | 5 | 6 |
| Flow Rate (vpce), pc/h | 0 | 302 | 43 | 111 | 0 | 61 | 26 | 86 | 0 | 39 | 122 | 31 | 0 | 52 | 211 | 269 |
| Right-Turn Bypass | None |  |  |  |
| Conflicting Lanes | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  |
| Pedestrians Crossing, p/h | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  |
| Critical and Follow-Up Headway Adjustment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | ft | Right | Bypass | Left | Right | Bypass |  |  | ght | Bypass |
| Critical Headway (s) |  |  |  | 4.9763 |  |  |  | 4.9763 |  |  | 4.9763 |  |  |  | 9763 |  |
| Follow-Up Headway (s) |  |  |  | 2.6087 |  |  |  | 2.6087 |  |  | 2.6087 |  |  |  | 6087 |  |
| Flow Computations, Capacity and v/c Ratios |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | ft | Right | Bypass | Left | Right | Bypass |  |  | ght | Bypass |
| Entry Flow (ve), pc/h |  |  |  | 456 |  |  |  | 173 |  |  | 192 |  |  |  | 532 |  |
| Entry Volume veh/h |  |  |  | 428 |  |  |  | 168 |  |  | 170 |  |  |  | 05 |  |
| Circulating Flow (vc), pc/h |  |  | 324 |  |  | 463 |  |  |  | 397 |  |  | 126 |  |  |  |
| Exiting Flow (vex), pc/h |  |  | 126 |  |  | 334 |  |  |  | 510 |  |  | 383 |  |  |  |
| Capacity (cpre), pc/h |  |  |  | 992 |  |  |  | 861 |  |  | 920 |  |  |  | 214 |  |
| Capacity (c), veh/h |  |  |  | 930 |  |  |  | 833 |  |  | 813 |  |  |  | 152 |  |
| v/c Ratio (x) |  |  |  | 0.46 |  |  |  | 0.20 |  |  | 0.21 |  |  |  | . 44 |  |
| Delay and Level of Service |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  | WB |  |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | ft | Right | Bypass | Left | Right | Bypass |  | ft | ght | Bypass |
| Lane Control Delay (d), s/veh |  |  |  | 9.4 |  |  |  | 6.4 |  |  | 6.6 |  |  |  | 7.7 |  |
| Lane LOS |  |  |  | A |  |  |  | A |  |  | A |  |  |  | A |  |
| 95\% Queue, veh |  |  |  | 2.5 |  |  |  | 0.7 |  |  | 0.8 |  |  |  | 2.3 |  |
| Approach Delay, s/veh |  |  | 9.4 |  |  | 6.4 |  |  |  | 6.6 |  |  | 7.7 |  |  |  |
| Approach LOS |  |  | A |  |  | A |  |  |  | A |  |  | A |  |  |  |
| Intersection Delay, s/veh \| LOS |  |  | 8.0 |  |  |  |  |  |  | A |  |  |  |  |  |  |
| Copyright © 2019 University of Florida. All Rights Reserved. |  |  |  |  | HCS7 TiN Roundabouts Version 7.4 2020_East Mini-RAB_AM Peak.xro |  |  |  |  |  |  | Gene | era | : 6/2 | 1911 | 20:16 AM |



| HCS7 Roundabouts Report |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Information |  |  |  |  |  |  | Site Information |  |  |  |  |  |  |  |  |  |
| Analyst | CW |  |  |  |  |  | Intersection |  |  |  | East Mini-Roundabout |  |  |  |  |  |
| Agency or Co. | Bolton \& Menk |  |  |  |  |  | E/W Street Name |  |  |  | Sunset Dr |  |  |  |  |  |
| Date Performed | 6/13/2019 |  |  |  |  |  | N/S Street Name |  |  |  | Hillside Dr |  |  |  |  |  |
| Analysis Year | 2020 |  |  |  |  |  | Analysis Time Period (hrs) |  |  |  | 0.25 |  |  |  |  |  |
| Time Analyzed | AM Peak |  |  |  |  |  | Peak Hour Factor |  |  |  | 1.00 |  |  |  |  |  |
| Project Description | Jordan School Area Study |  |  |  |  |  | Jurisdiction |  |  |  | Jordan, MN |  |  |  |  |  |
| Volume Adjustments and Site Characteristics |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach | EB |  |  |  | WB |  |  |  | NB |  |  |  | SB |  |  |  |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Number of Lanes (N) | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| Lane Assignment | LTR |  |  |  |  |  | LTR |  |  |  | LTR |  |  |  | LTR |  |
| Volume (V), veh/h | 0 | 183 | 24 | 13 | 0 | 3 | 11 | 55 | 0 | 12 | 33 | 17 | 0 | 64 | 19 | 184 |
| Percent Heavy Vehicles, \% | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Flow Rate (VpcE), pc/h | 0 | 188 | 25 | 13 | 0 | 3 | 11 | 57 | 0 | 12 | 34 | 18 | 0 | 66 | 20 | 190 |
| Right-Turn Bypass | None |  |  |  |
| Conflicting Lanes | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  |
| Pedestrians Crossing, p/h | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  |
| Critical and Follow-Up Headway Adjustment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  |  | Bypass |
| Critical Headway (s) |  |  |  | 4.9763 |  |  |  | 4.9763 |  |  | 4.9763 |  |  |  | 763 |  |
| Follow-Up Headway (s) |  |  |  | 2.6087 |  |  |  | 2.6087 |  |  | 2.6087 |  |  |  | 087 |  |
| Flow Computations, Capacity and v/c Ratios |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  |  | ht | Bypass |
| Entry Flow (ve), pc/h |  |  |  | 226 |  |  |  | 71 |  |  | 64 |  |  |  | 6 |  |
| Entry Volume veh/h |  |  |  | 219 |  |  |  | 69 |  |  | 62 |  |  |  | 68 |  |
| Circulating Flow ( $\mathrm{vc}_{\mathrm{c}}$, pc/h |  |  | 89 |  |  | 234 |  |  |  | 279 |  |  | 26 |  |  |  |
| Exiting Flow (vex), pc/h |  |  | 109 |  |  | 213 |  |  |  | 279 |  |  | 36 |  |  |  |
| Capacity (cpre), pc/h |  |  |  | 1260 |  |  |  | 1087 |  |  | 1038 |  |  |  | 344 |  |
| Capacity (c), veh/h |  |  |  | 1224 |  |  |  | 1055 |  |  | 1008 |  |  |  | 305 |  |
| v/c Ratio (x) |  |  |  | 0.18 |  |  |  | 0.07 |  |  | 0.06 |  |  |  | 21 |  |
| Delay and Level of Service |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach |  |  | EB |  |  | WB |  |  |  | NB |  |  | SB |  |  |  |
| Lane |  |  | Left | Right | Bypass |  | eft | Right | Bypass | Left | Right | Bypass |  | ft | ght | Bypass |
| Lane Control Delay (d), s/veh |  |  |  | 4.5 |  |  |  | 4.0 |  |  | 4.1 |  |  |  | . 5 |  |
| Lane LOS |  |  |  | A |  |  |  | A |  |  | A |  |  |  | A |  |
| 95\% Queue, veh |  |  |  | 0.7 |  |  |  | 0.2 |  |  | 0.2 |  |  |  | . 8 |  |
| Approach Delay, s/veh |  |  | 4.5 |  |  | 4.0 |  |  |  | 4.1 |  |  | 4.5 |  |  |  |
| Approach LOS |  |  | A |  |  | A |  |  |  | A |  |  | A |  |  |  |
| Intersection Delay, s/veh \| LOS |  |  | 4.4 |  |  |  |  |  |  |  |  |  | A |  |  |  |
| Copyright © 2019 University of Florida. All Rights Reserved. HCS7 זiNM Roundabouts Version 7.4 Generated: 6/28/2019 11:19:11 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |





## Appendix F: Mitigation Layouts







## Appendix G: Warrant Analysis

Real People. Real Solutions.
SIGNAL WARRANTS ANALYSIS
FOR
Sunset Dr and Middle/High School Access

LOCATION: Jordan
COUNTY: Scott County REF. POINT:

DATE: 6/26/2019
OPERATOR: CW

| Speed | Approach Description | Lanes |
| :---: | :--- | :---: |
| 30 | Major App1: SUNSET DR (WESTBOUND) | 2 |
| 30 | Major App3: SUNSET DR (EASTBOUND) | 1 |
| 30 | Minor App2: HILLSIDE DR (SOUTHBOUND) | 1 |


| $l\|l\|$ | No |
| :--- | :--- |
| 0.70 FACTOR USED? |  |
| POPULATION < 10,000? | No |
|  | Yes |

THRESHOLDS 1A/1B:

| HOUR | MAJOR APP. 1 | MAJOR APP. 3 | $\begin{gathered} \hline \text { TOTAL } \\ 1+3 \end{gathered}$ | MAJOR 1A/1B | MINOR APP. 2 | MINOR 2 <br> 1A/1B | MINOR APP. 4 | MINOR 4 <br> 1A/1B | MET SAME <br> 1A/1B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0:00-1:00 | 0 | 0 | 0 | / | 0 | 1 |  |  | I |
| 1:00-2:00 | 0 | 0 | 0 | 1 | 0 | 1 |  |  | 1 |
| 2:00-3:00 | 0 | 0 | 0 | 1 | 0 | 1 |  |  | 1 |
| 3:00-4:00 | 0 | 0 | 0 | 1 | 0 | 1 |  |  | 1 |
| 4:00-5:00 | 0 | 0 | 0 | 1 | 0 | 1 |  |  | 1 |
| 5:00-6:00 | 0 | 0 | 0 | I | 0 | 1 |  |  | 1 |
| 6:00-7:00 | 41 | 147 | 188 | 1 | 8 | / |  |  | 1 |
| 7:00-8:00 | 99 | 306 | 405 | I | 39 | 1 |  |  | 1 |
| 8:00-9:00 | 67 | 161 | 228 | / | 17 | / |  |  | I |
| 9:00-10:00 | 24 | 80 | 104 | / | 11 | / |  |  | 1 |
| 10:00-11:00 | 22 | 109 | 131 | / | 17 | / |  |  | 1 |
| 11:00-12:00 | 25 | 84 | 109 | 1 | 21 | 1 |  |  | 1 |
| 12:00-13:00 | 34 | 92 | 126 | 1 | 25 | 1 |  |  | 1 |
| 13:00-14:00 | 20 | 103 | 123 | 1 | 21 | 1 |  |  | 1 |
| 14:00-15:00 | 48 | 172 | 220 | 1 | 32 | 1 |  |  | 1 |
| 15:00-16:00 | 52 | 269 | 321 | 1 | 46 | 1 |  |  | I |
| 16:00-17:00 | 49 | 219 | 268 | 1 | 60 | /X |  |  | 1 |
| 17:00-18:00 | 62 | 230 | 292 | 1 | 53 | I |  |  | I |
| 18:00-19:00 | 76 | 159 | 235 | / | 78 | /X |  |  | I |
| 19:00-20:00 | 0 | 0 | 0 | 1 | 0 | I |  |  | 1 |
| 20:00-21:00 | 0 | 0 | 0 | 1 | 0 | 1 |  |  | I |
| 21:00-22:00 | 0 | 0 | 0 | 1 | 0 | 1 |  |  | I |
| 22:00-23:00 | 0 | 0 | 0 | / | 0 | 1 |  |  | 1 |
| 23:00-24:00 | 0 | 0 | 0 | 1 | 0 | 1 |  |  | 1 |


|  |  | Required (Hr) | Not satisfied |
| :--- | :--- | :---: | :--- |
| Warrant 1A | 0 | 8 | Not satisfied |
| Warrant 1B | 0 | 8 | Not satisfied |
| Warrant 2 | 0 | 4 | Not satisfied |
| Warrant 3 | 0 | 1 | Not satisfied |
| Warrant 7 | 0 | 8 |  |

LOCATION: Jordan
COUNTY: Scott County
REF. POINT:
DATE: 6/26/2019

OPERATOR: CW

| Speed | Approach Description | Lanes |
| :---: | :--- | :---: |
| 30 | Major App1: SUNSET DR (WESTBOUND) | 2 |
| 30 | Major App3: SUNSET DR (EASTBOUND) | 1 |
| 30 | Minor App2: HILLSIDE DR (SOUTHBOUND) | 1 |


| 0.70 FACTOR USED? | No |
| :--- | :---: |
| POPULATION < 10,000? | No |
| EXISTING SIGNAL? | Yes |



Figure 1. Four Hour and Peak Hour Warrant Analysis
Note: For data points outside the graph range, check the minor street volume against the lower thresholds
Major
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
Warrant Criteria
Warrant 2, F Warrant 3, Pe
440
390
340
290
245
205

| Actual <br> Major | Hourly Count <br> Actual |
| :---: | :---: |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 188 | 8 |
| 405 | 39 |
| 228 | 17 |
| 104 | 11 |
| 131 | 17 |
| 109 | 21 |
| 126 | 25 |
| 123 | 21 |
| 220 | 32 |
| 321 | 46 |
| 268 | 60 |
| 292 | 53 |
| 235 | 78 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |

# ALL WAY STOP WARRANT ANALYSIS <br> FOR <br> Sunset Dr and Middle/High School Access 

LOCATION: Jordan COUNTY: Scott County REF. POINT:

DATE: 6/26/2019

OPERATOR: CW

| Speed | Approach Description | Lanes |
| :---: | :--- | :---: |
| 30 | Major App1: SUNSET DR (WESTBOUND) | 2 |
| 30 | Major App3: SUNSET DR (EASTBOUND) | 1 |
| 30 | Minor App2: MS ACCESS (SOUTHBOUND) | 1 |

### 0.70 FACTOR USED?

No
$300 \quad 200$

| HOUR | MAJOR APP. 1 | MAJOR <br> APP. 3 | MINOR APP. 2 | MINOR APP. 4 | $\begin{gathered} \text { MAJOR TOTAL } \\ \Sigma \text { (APP. } 1 \& \text { APP. 3) } \end{gathered}$ | MINOR TOTAL APP. 2 + APP. 4 | WARRANT MET |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0:00-1:00 | 0 | 0 | 0 |  | 0 | 0 | / |
| 1:00-2:00 | 0 | 0 | 0 |  | 0 | 0 | / |
| 2:00-3:00 | 0 | 0 | 0 |  | 0 | 0 | / |
| 3:00-4:00 | 0 | 0 | 0 |  | 0 | 0 | / |
| 4:00-5:00 | 0 | 0 | 0 |  | 0 | 0 | / |
| 5:00-6:00 | 0 | 0 | 0 |  | 0 | 0 | / |
| 6:00-7:00 | 41 | 147 | 8 |  | 188 | 8 | / |
| 7:00-8:00 | 99 | 306 | 39 |  | 405 | 39 | X/ |
| 8:00-9:00 | 67 | 161 | 17 |  | 228 | 17 | I |
| 9:00-10:00 | 24 | 80 | 11 |  | 104 | 11 | 1 |
| 10:00-11:00 | 22 | 109 | 17 |  | 131 | 17 | 1 |
| 11:00-12:00 | 25 | 84 | 21 |  | 109 | 21 | / |
| 12:00-13:00 | 34 | 92 | 25 |  | 126 | 25 | I |
| 13:00-14:00 | 20 | 103 | 21 |  | 123 | 21 | 1 |
| 14:00-15:00 | 48 | 172 | 32 |  | 220 | 32 | I |
| 15:00-16:00 | 52 | 269 | 46 |  | 321 | 46 | X/ |
| 16:00-17:00 | 49 | 219 | 60 |  | 268 | 60 | / |
| 17:00-18:00 | 62 | 230 | 53 |  | 292 | 53 | 1 |
| 18:00-19:00 | 76 | 159 | 78 |  | 235 | 78 | 1 |
| 19:00-20:00 | 0 | 0 | 0 |  | 0 | 0 | 1 |
| 20:00-21:00 | 0 | 0 | 0 |  | 0 | 0 | 1 |
| 21:00-22:00 | 0 | 0 | 0 |  | 0 | 0 | 1 |
| 22:00-23:00 | 0 | 0 | 0 |  | 0 | 0 | 1 |
| 23:00-24:00 | 0 | 0 | 0 |  | 0 | 0 | 1 |

Allway Stop Warrant:
0
8
Not satisfied
REMARKS: $\qquad$
$\qquad$

Real People. Real Solutions.
SIGNAL WARRANTS ANALYSIS
FOR
Sunset Dr and Middle/High School Access

LOCATION: Jordan
COUNTY: Scott County REF. POINT:

DATE: 6/26/2019
OPERATOR: CW

| Speed | Approach Description | Lanes |
| :---: | :--- | :---: |
| 30 | Major App1: SUNSET DR (WESTBOUND) | 2 |
| 30 | Major App3: SUNSET DR (EASTBOUND) | 1 |
| 30 | Minor App2: HS ACCESS (NORTHBOUND) | 1 |
| 30 | Minor App4: MS ACCESS (SOUTHBOUND) | 1 |



| HOUR | MAJOR APP. 1 | MAJOR APP. 3 | $\begin{gathered} \hline \text { TOTAL } \\ 1+3 \end{gathered}$ | MAJOR 1A/1B | MINOR APP. 2 | MINOR 2 <br> 1A/1B | MINOR APP. 4 | MINOR 4 1A/1B | MET SAME <br> 1A/1B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0:00-1:00 | 0 | 0 | 0 | / | 0 | / | 0 | / | I |
| 1:00-2:00 | 0 | 0 | 0 | / | 0 | / | 0 | 1 | , |
| 2:00-3:00 | 0 | 0 | 0 | 1 | 0 | / | 0 | 1 | I |
| 3:00-4:00 | 0 | 0 | 0 | 1 | 0 | / | 0 | / | I |
| 4:00-5:00 | 0 | 0 | 0 | I | 0 | / | 0 | 1 | 1 |
| 5:00-6:00 | 0 | 0 | 0 | / | 0 | / | 0 | / | I |
| 6:00-7:00 | 81 | 105 | 186 | / | 12 | / | 0 | 1 | 1 |
| 7:00-8:00 | 240 | 252 | 492 | / | 58 | / | 4 | / | I |
| 8:00-9:00 | 247 | 197 | 444 | / | 39 | 1 | 2 | 1 | 1 |
| 9:00-10:00 | 37 | 39 | 76 | / | 12 | / | 0 | / | I |
| 10:00-11:00 | 69 | 60 | 129 | I | 8 | I | 0 | I | 1 |
| 11:00-12:00 | 66 | 42 | 108 | 1 | 35 | 1 | 1 | 1 | 1 |
| 12:00-13:00 | 90 | 43 | 133 | / | 16 | / | 0 | 1 | I |
| 13:00-14:00 | 106 | 57 | 163 | 1 | 20 | 1 | 1 | 1 | 1 |
| 14:00-15:00 | 150 | 135 | 285 | 1 | 19 | I | 1 | 1 | 1 |
| 15:00-16:00 | 272 | 231 | 503 | 1 | 58 | 1 | 3 | 1 | 1 |
| 16:00-17:00 | 91 | 169 | 260 | 1 | 36 | 1 | 2 | 1 | 1 |
| 17:00-18:00 | 133 | 118 | 251 | / | 43 | / | 2 | 1 | I |
| 18:00-19:00 | 110 | 85 | 195 | 1 | 31 | / | 1 | 1 | 1 |
| 19:00-20:00 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
| 20:00-21:00 | 0 | 0 | 0 | / | 0 | / | 0 | / | I |
| 21:00-22:00 | 0 | 0 | 0 | / | 0 | / | 0 | / | I |
| 22:00-23:00 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
| 23:00-24:00 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |

$\quad \operatorname{Met}(\mathrm{Hr}) \quad$ Required (Hr)

| Warrant 1A | 0 | 8 | Not satisfied |
| :--- | :--- | :--- | :--- |
| Warrant 1B | 0 | 8 | Not satisfied |
| Warrant 2 | 0 | 4 | Not satisfied |
| Warrant 3 | 0 | 1 | Not satisfied |
| Warrant 7 | 0 | 8 | Not satisfied |

LOCATION: Jordan
COUNTY: Scott County
REF. POINT:
DATE: 6/26/2019

OPERATOR: CW

| Speed | Approach Description | Lanes |
| :---: | :--- | :---: |
| 30 | Major App1: SUNSET DR (WESTBOUND) | 2 |
| 30 | Major App3: SUNSET DR (EASTBOUND) | 1 |
| 30 | Minor App2: HS ACCESS (NORTHBOUND) | 1 |
| 30 | Minor App4: MS ACCESS (SOUTHBOUND) | 1 |


| 0.70 FACTOR USED? | No |
| :--- | :--- |
| POPULATION < 10,000? | No |
| EXISTING SIGNAL? | No |

# ALL WAY STOP WARRANT ANALYSIS <br> FOR <br> Sunset Dr and Middle/High School Access 

LOCATION: Jordan
COUNTY: Scott County
REF. POINT:
DATE: 6/26/2019

OPERATOR: CW
0.70 FACTOR USED?

No

| Speed | Approach Description | Lanes |
| :---: | :--- | :---: |
| 30 | Major App1: SUNSET DR (WESTBOUND) | 2 |
| 30 | Major App3: SUNSET DR (EASTBOUND) | 1 |
| 30 | Minor App2: HS ACCESS (NORTHBOUND) | 1 |
| 30 | Minor App4: MS ACCESS (SOUTHBOUND) | 1 |


|  |  |  |  |  |  | 200 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HOUR | MAJOR APP. 1 | MAJOR APP. 3 | MINOR APP. 2 | MINOR APP. 4 | MAJOR TOTAL $\Sigma$ (APP. 1 \& APP. 3) | MINOR TOTAL APP. 2 + APP. 4 | WARRANT MET |
| 0:00-1:00 | 0 | 0 | 0 | 0 | 0 | 0 | / |
| 1:00-2:00 | 0 | 0 | 0 | 0 | 0 | 0 | / |
| 2:00-3:00 | 0 | 0 | 0 | 0 | 0 | 0 | / |
| 3:00-4:00 | 0 | 0 | 0 | 0 | 0 | 0 | / |
| 4:00-5:00 | 0 | 0 | 0 | 0 | 0 | 0 | / |
| 5:00-6:00 | 0 | 0 | 0 | 0 | 0 | 0 | / |
| 6:00-7:00 | 81 | 105 | 12 | 0 | 186 | 12 | / |
| 7:00-8:00 | 240 | 252 | 58 | 4 | 492 | 62 | X/ |
| 8:00-9:00 | 247 | 197 | 39 | 2 | 444 | 41 | X/ |
| 9:00-10:00 | 37 | 39 | 12 | 0 | 76 | 12 | I |
| 10:00-11:00 | 69 | 60 | 8 | 0 | 129 | 8 | I |
| 11:00-12:00 | 66 | 42 | 35 | 1 | 108 | 36 | / |
| 12:00-13:00 | 90 | 43 | 16 | 0 | 133 | 16 | / |
| 13:00-14:00 | 106 | 57 | 20 | 1 | 163 | 21 | I |
| 14:00-15:00 | 150 | 135 | 19 | 1 | 285 | 20 | / |
| 15:00-16:00 | 272 | 231 | 58 | 3 | 503 | 61 | X/ |
| 16:00-17:00 | 91 | 169 | 36 | 2 | 260 | 38 | / |
| 17:00-18:00 | 133 | 118 | 43 | 2 | 251 | 45 | / |
| 18:00-19:00 | 110 | 85 | 31 | 1 | 195 | 32 | / |
| 19:00-20:00 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 20:00-21:00 | 0 | 0 | 0 | 0 | 0 | 0 | / |
| 21:00-22:00 | 0 | 0 | 0 | 0 | 0 | 0 | / |
| 22:00-23:00 | 0 | 0 | 0 | 0 | 0 | 0 | / |
| 23:00-24:00 | 0 | 0 | 0 | 0 | 0 | 0 | I |
| Allway Stop Warrant: |  | Met (Hr) | Required (Hr) |  | Not satisfied |  |  |
|  |  | 0 | 8 |  |  |  |  |

REMARKS: $\qquad$
$\qquad$


[^0]:    1. Delay in seconds per vehicle
    2. Maximum delay and LOS on any approach and/or movement
    3. Limiting Movement is the highest delay movement.
[^1]:    1. Delay in seconds per vehicle
    2. Maximum delay and LOS on any approach and/or movement
    3. Limiting Movement is the highest delay movement.
